6.2 Energy: GPE & KE

Question Paper

Course	CIE A Level Physics (9702) 2019-2021		
Section	6. Work, Energy & Power		
Topic	6.2 Energy: GPE & KE		
Difficulty	Easy		

Time allowed: 10

Score: /10

Percentage: /100

Question 1

A stone of weight 4.0 N in the Earth's gravitational field is moved from P to Q and then to R along the path shown.

How much potential energy does the stone gain?

Question 2

A cyclist is travelling at a constant speed up a hill. The frictional force resisting the cyclist's motion is 8.0 N.

The cyclist uses 450 J of energy to travel 20 m.

What is the increase in gravitational potential energy of the cyclist?

A 160 J

B 290 J

C 440 J

D 610 J

Question 3

The formula for gravitational potential energy is $E_p = mgh$

From which concept is this equation derived?

- A Work Done = Force × Distance
- **B** Force = Mass × Acceleration
- C Power = Force × Speed
- **D** Distance = Speed × Time

[1 mark]

Question 4

The formula for kinetic energy is $E_k = \frac{1}{2}mv^2$

Which kinematic equation is used in the derivation of this formula?

- $\mathbf{A} \quad v = u + at$
- $\mathbf{B} \quad s = \left(\frac{u+v}{2}\right)t$
- $\mathbf{C} \qquad S = ut + \frac{1}{2}at^2$
- $\mathbf{D} \quad v^2 = u^2 + 2as$

Question 5	0	ues	tic	n	5
------------	---	-----	-----	---	---

A car with a total mass of 1400 kg is travelling at 108 km h⁻¹

What is the kinetic energy of the car?

A 21 kJ

B 42 kJ

C 630 kJ

D 8160 kJ

[1 mark]

Question 6

To get to his office from the entrance of the building, a man has to walk up six flights of stairs.

The height of each flight is 2.5 m and the man has a mass of 80 kg.

What is the approximate gain in the man's gravitational potential energy during the climb?

1200 J

2000 J

4800 J

12 000 J

[1 mark]

Question 7

A car of mass 1000 kg travels forwards at 25 m s⁻¹ and then backwards at 5 m s⁻¹

What is the change in the kinetic energy of the car?

A 200 kJ

B 300 kJ

C 325 kJ

450 kJ

Question 8

An object is thrown into the air.

Which graph shows how the potential energy E_p of the object varies with height h above the ground?

Question 9

A body travelling with a speed of 10 m s⁻¹ has kinetic energy 1500 J.

If the speed of the body is increased to 40 m s^{-1} , what is its new kinetic energy?

A 4.5 kJ **B** 6 kJ **C** 24 kJ **D** 1350 kJ [1 mark]

Question 10

What is the approximate kinetic energy of an Olympic athlete when running at maximum speed during a 100m race?

A 400 J

B 4000 J

C 40 000 J

D 400 000 J

