## **General Wave Properties**

## **Question Paper**

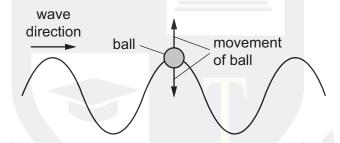
| Level      | O Level                              |
|------------|--------------------------------------|
| Subject    | Physics                              |
| Exam Board | Cambridge International Examinations |
| Unit       | Waves                                |
| Topic      | General Wave Properties              |
| Booklet    | Question Paper                       |

Time Allowed: 50 minutes

Score: /42

Percentage: /100

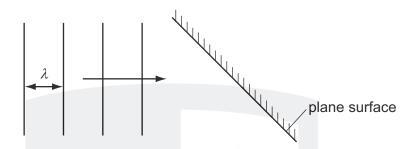
**Grade Boundaries:** 


|   | Α    | a line joinin  | g all poir | nts on the s | ame cres   | st of a wave | 9            |           |            |           |           |
|---|------|----------------|------------|--------------|------------|--------------|--------------|-----------|------------|-----------|-----------|
|   | В    | a line show    | -          |              |            |              |              |           |            |           |           |
|   | С    | the energy     | Ü          | •            |            |              |              |           |            |           |           |
|   | D    | the first par  |            |              | a noint    |              |              |           |            |           |           |
|   | D    | tile ilist pai | l OI a Wa  | ve to reach  | α μοπιτ    |              |              |           |            |           |           |
| 2 | A lo | ngitudinal wa  | ave pass   | es along a   | spring. T  | he coils of  | the spring   | g vibrate | from sid   | e to side | €.        |
|   | The  | e diagram sh   | ows the    | positions of | the coils  | at one pa    | rticular tir | ne.       |            |           |           |
|   |      | <br>w          | I          | <br>x        | 1          |              |              | 1         |            | <br>z     |           |
|   | Wh   | ich positions  | are one    | wavelengtl   | n apart?   |              |              |           |            |           |           |
|   | Α    | W and X        | В          | W and Z      | C          | X and Z      | D            | Y and     | Z          |           |           |
|   |      |                |            |              |            |              |              |           |            |           |           |
|   |      |                |            |              |            |              |              |           |            |           |           |
| 3 | A w  | ater wave in   | a ripple t | tank refract | s as it pa | sses from    | deep wat     | er to sha | allow wat  | er.       |           |
|   | Wh   | nich propertie | es change  | e as the wa  | ve refrac  | cts?         |              |           |            |           |           |
|   | Α    | frequency a    | and ampl   | litude       |            |              |              |           |            |           |           |
|   | В    | frequency a    | and wave   | elength      |            |              |              |           |            |           |           |
|   | С    | speed and      | frequenc   | cy           |            |              |              |           |            |           |           |
|   | D    | speed and      | wavelen    | gth          |            |              |              |           |            |           |           |
| 4 | A so | und wave tra   | avels thro | ough air. Ti | ne lines i | n the diagr  | ram show     | the pos   | sitions of | layers    | of air at |
|   | one  | particular tin | ne.        |              |            |              |              |           |            |           |           |
|   | Whi  | ch distance s  | shows th   | e waveleng   | th of the  | wave?        |              |           |            |           |           |
|   |      |                | 3          |              | c          |              |              |           |            |           |           |
| _ | Α    | <b>→</b>       |            |              |            | -            |              |           |            |           | -         |

**1** For a transverse wave, what is a *wavefront*?

5 A wave in a ripple tank passes from a deeper to a shallower region and refracts.

Which wave properties decrease as the wave enters the shallow region?


- A frequency only
- **B** speed only
- C frequency and wavelength
- **D** speed and wavelength
- A ball floating in a ripple tank begins to move vertically up and down as a wave passes beneath it. The ball does not move horizontally.



Which statement is correct?

- A Both energy and water are transferred in the wave direction.
- **B** Energy is not transferred in the wave direction but water is.
- **C** Energy is transferred in the wave direction but water is not.
- **D** Neither energy nor water is transferred in the wave direction.

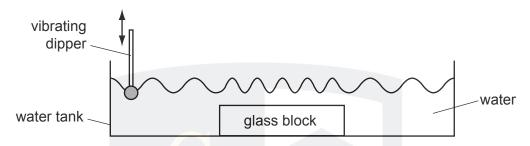
7 In an experiment using a ripple tank, plane wavefronts arrive at a plane surface.



Which row correctly describes the waves after they are reflected from the surface?

|   | speed of waves | wavelength $\lambda$ |
|---|----------------|----------------------|
| Α | larger         | shorter              |
| В | smaller        | shorter              |
| С | the same       | longer               |
| D | the same       | the same             |

- 8 Which statement is correct?
  - A Infra-red radiation cannot travel in a vacuum.
  - **B** Infra-red radiation cannot travel in solids or in gases.
  - **C** Infra-red radiation can only travel in a vacuum.
  - **D** Infra-red radiation can travel in a vacuum and in gases.
- 9 Water waves refract at a boundary between deep water and shallow water.


What is the effect on the frequency, wavelength and speed of the waves at the boundary?

|   | frequency      | Wavelength     | speed          |
|---|----------------|----------------|----------------|
| Α | changes        | changes        | stays the same |
| В | changes        | stays the same | stays the same |
| С | stays the same | changes        | changes        |
| D | stays the same | stays the same | changes        |

|            | Α    | The number of waves passing a fixed point per second.                                |  |  |  |  |
|------------|------|--------------------------------------------------------------------------------------|--|--|--|--|
|            | В    | The number of peaks added to the number of troughs passing a fixed point per second. |  |  |  |  |
|            | С    | The time taken for one wave to pass a fixed point.                                   |  |  |  |  |
|            | D    | The time taken for the displacement to change from maximum to minimum.               |  |  |  |  |
|            |      |                                                                                      |  |  |  |  |
| 11         | Whi  | ich statement is correct for all electromagnetic waves?                              |  |  |  |  |
|            | Α    | They are transverse.                                                                 |  |  |  |  |
|            | В    | They cannot travel in a vacuum.                                                      |  |  |  |  |
|            | С    | They have the same frequency.                                                        |  |  |  |  |
|            | D    | They travel through lead.                                                            |  |  |  |  |
|            |      |                                                                                      |  |  |  |  |
| <b>1</b> 2 | Αw   | vave of frequency 13 000 Hz travels 1300 m in 4.0 s.                                 |  |  |  |  |
|            | Wh   | nat is the wavelength of the wave?                                                   |  |  |  |  |
|            | Α    | 0.025 m <b>B</b> 0.40 m <b>C</b> 2.5 m <b>D</b> 40 m                                 |  |  |  |  |
|            |      |                                                                                      |  |  |  |  |
|            |      |                                                                                      |  |  |  |  |
| 13         | A st | tar explodes in outer space.                                                         |  |  |  |  |
|            | Wh   | ich waves from the exploding star do <b>not</b> reach the Earth?                     |  |  |  |  |
|            | Α    | infra-red T L L L L L L L L L L L L L L L L L L                                      |  |  |  |  |
|            | В    | light                                                                                |  |  |  |  |
|            | С    | radio                                                                                |  |  |  |  |
|            | D    | sound                                                                                |  |  |  |  |
|            |      |                                                                                      |  |  |  |  |
|            |      |                                                                                      |  |  |  |  |
|            |      |                                                                                      |  |  |  |  |

10 What is the frequency of a wave?

**1**4 A ripple tank is used to show wave behaviour. The dipper vibrates up and down at a constant frequency.

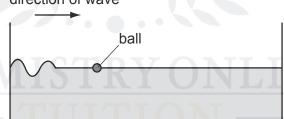


What happens to the frequency and to the speed of the wave as it reaches the glass block?

|   | frequency        | speed     |
|---|------------------|-----------|
| Α | decreases        | decreases |
| В | decreases        | increases |
| С | remains the same | decreases |
| D | remains the same | increases |

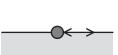
15 A wave has a frequency of 10 kHz.

Which pair of values of its speed and wavelength is possible?

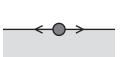

|   | speed<br>m/s    | wavelength<br>m     |
|---|-----------------|---------------------|
| Α | 330             | 0.33                |
| В | 330             | 33                  |
| С | $3.0\times10^8$ | 30                  |
| D | $3.0\times10^8$ | $3.0 \times 10^{4}$ |

16 Energy can be transferred in many different ways.

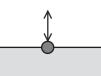
In which situation is energy transferred by wave motion?


- colliding atoms in a heated copper rod Α
- В fast-moving electrons in a cathode-ray oscilloscope
- C hot water rising in a heated saucepan
- ripples passing across water in a ripple tank D
- 17 Which of the following travels as a longitudinal wave?
  - a radio wave in air
  - В a sound wave in a solid
  - C a wave on a rope shaken from side to side
  - D an infra-red wave in space
- 18 The diagram shows a ball floating in a tank of water.

direction of wave



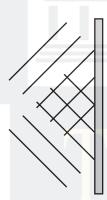

Which diagram shows the movement of the ball as the wave passes?


Α



В




C

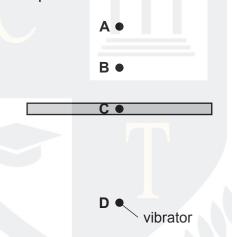


19 A wave has a frequency of 2 Hz.

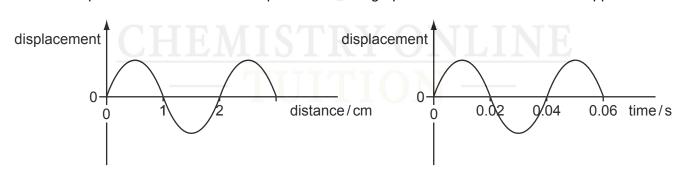
How many waves are produced in one minute?

- **A** 2 × 60
- **B**  $\frac{60}{2}$
- **C** 2
- **D**  $\frac{2}{60}$
- **2**0 The diagram shows the pattern of waves in a ripple tank.




What does the pattern show?

- A waves being reflected
- B waves being refracted
- C waves changing frequency
- D waves changing speed

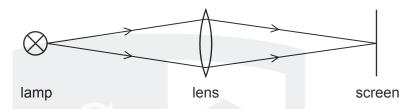

21 In a ripple tank, a vibrator produces circular wavefronts which hit a flat surface.



The reflected wavefronts are also parts of circles. Where is the centre of these circles?



22 The displacement-distance and displacement-time graphs are for a water wave in a ripple tank.




What is the speed of the water wave?

- **A** 0.02 cm/s
- **B** 0.08 cm/s
- **C** 25 cm/s
- **D** 50 cm/s

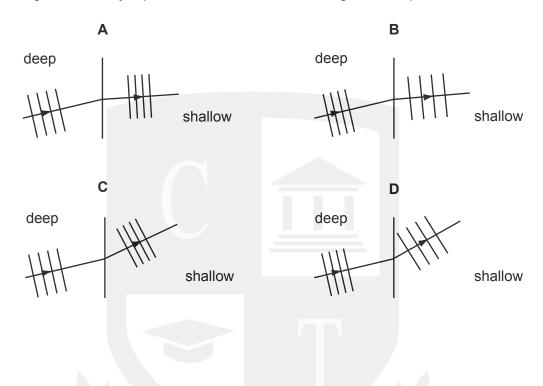
23 A student uses a spring to demonstrate waves. He moves the spring with his hand. spring placed on bench Which diagram demonstrates the type of wave produced by a source of sound? Α В C 

- 24 Which diagram shows an example of a longitudinal wave?
  - A light travelling from a lamp to a screen

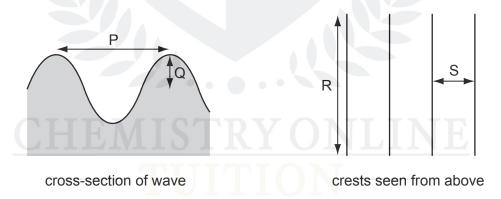


**B** a spring pushed backwards and forwards




C a spring pushed up and down

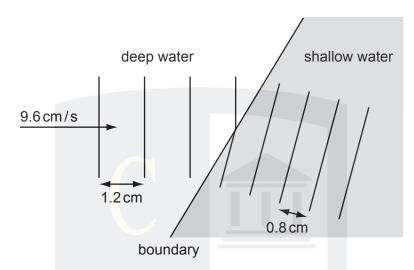



D a water ripple caused by a dipper moving up and down



25 Which diagram correctly represents water waves travelling from deep water to shallow water?




26 The diagrams show different views of a water wave in a ripple tank.

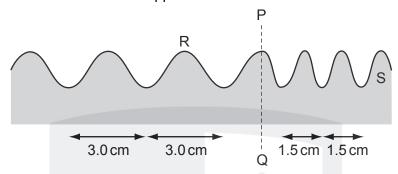


Which letters represent a wavelength and a wavefront?

|   | wavelength | wavefront |
|---|------------|-----------|
| Α | Р          | R         |
| В | Р          | s         |
| С | Q          | R         |
| D | Q          | S         |

**2**7 A ripple tank is used to demonstrate refraction of plane water waves.




Waves in deep water have a wavelength of 1.2 cm and a speed of 9.6 cm/s. The wavelength of the waves in shallow water is 0.8 cm.

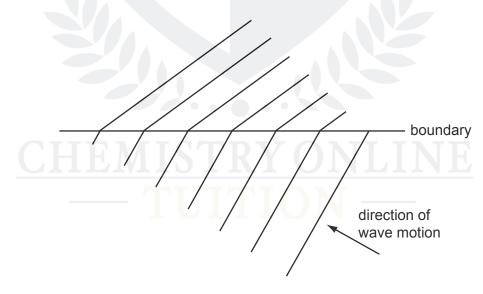
What is the speed of the waves in the shallow water?

- **A** 6.4 cm/s
- **B** 8.0 cm/s
- **C** 9.6 cm/s
- **D** 14.4 cm/s
- 28 When ice melts to become water, which force must be overcome?
  - A the attraction between electrons and the nucleus
  - **B** the attraction between the atoms in a molecule
  - C the force between molecules
  - **D** the force of gravity
- 29 Which factors increase the rate of evaporation of a liquid?

|   | increasing its temperature | increasing its surface area | increasing its depth |
|---|----------------------------|-----------------------------|----------------------|
| Α | yes                        | yes                         | yes                  |
| В | yes                        | yes                         | no                   |
| С | yes                        | no                          | yes                  |
| D | no                         | yes                         | yes                  |

30 The diagram shows a water wave in a ripple tank.

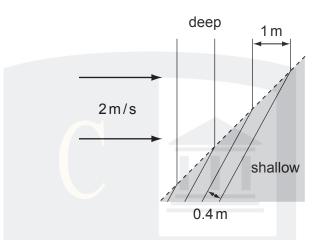



The wave has a speed of 12 cm/s at R.

The wave crosses a boundary PQ where the distance between crests changes from 3.0 cm to 1.5 cm.

What is the speed of the wave at S?

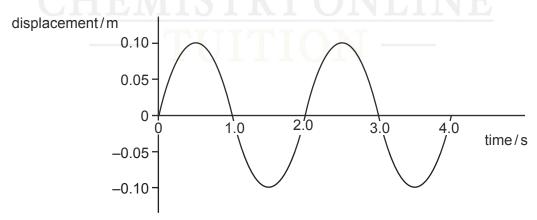
- **A** 3.0 cm/s
- **B** 6.0 cm/s
- C 12 cm/s
- **D** 24 cm/s


31 The diagram shows the refraction of water waves as they cross a boundary in a ripple tank.



What causes this refraction?

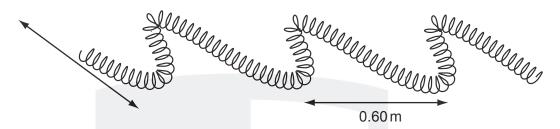
- A a change in frequency due to a change in depth
- **B** a change in frequency due to a change in wavelength
- C a change in speed due to a change in depth
- **D** a change in speed due to a change in frequency


32 Waves pass from deep water to shallow water and refraction occurs.



What is the speed of the waves in the shallow water?

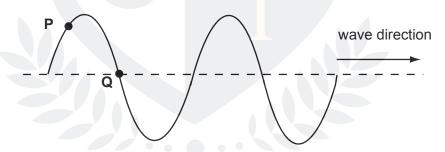
- **A** 0.2 m/s
- **B** 0.8 m/s
- C 2.0 m/s
- **D** 5.0 m/s


- 33 What is meant by the term wavefront?
  - A the distance between successive peaks of a wave
  - **B** the distance between the trough and the peak of a wave
  - **C** a line joining points along the peak of a wave
  - **D** a line joining the trough and the peak of a wave
- 34 The diagram shows how displacement varies with time as a wave passes a fixed point.



What is the frequency of this wave?

- **A** 0.25 Hz
- **B** 0.50 Hz
- **C** 1.0 Hz
- **D** 2.0 Hz

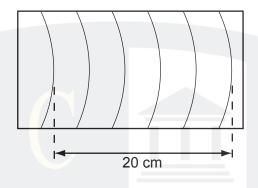

35 The diagram shows part of a spring that is shaken from side to side to produce a wave.



The distance between successive peaks is 0.60 m and the frequency is 2.5 Hz.

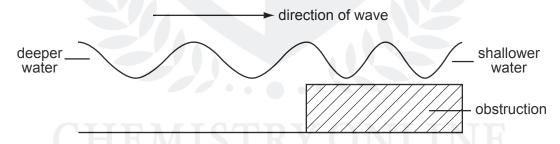
How long does it take for a wave to travel 3.0 m along the spring?

- **A** 0.20 s
- **B** 0.50s
- **C** 2.0 s
- **5**.0 s
- 36 The diagram shows a wave on a string with two points **P** and **Q** marked. The wave is moving in the direction shown.




What will happen next?

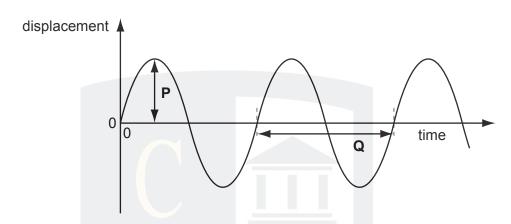
- A P will move to the right.
- **B P** will move up.
- **C Q** will not move.
- **D Q** will move up.


37 The dipper in a ripple tank vibrates at a frequency of 4.0 Hz and the resulting wave pattern is photographed.

The distance between the two crests shown is 20 cm.



What is the speed of the wave?


- A 4cm/s
- B 5cm/s
- C 16 cm/s
- **D** 20 cm/s
- 38 The diagram shows a wave moving into shallower water.

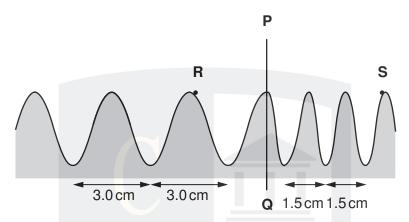


The wavelength of the waves is reduced because

- A both the frequency and the speed decrease.
- **B** both the frequency and the speed increase.
- **C** only the frequency increases.
- **D** only the speed decreases.

39 The diagram shows a graph of wave motion.




Which quantities are shown by distances P and Q?

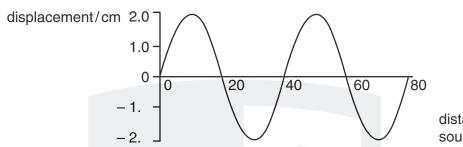
|   | P                  | Q          |
|---|--------------------|------------|
| Α | amplitude          | period     |
| В | amplitude          | wavelength |
| С | half the amplitude | period     |
| D | half the amplitude | wavelength |

40 Which of the following is an example of a transverse and a longitudinal wave?

|   | transverse wave | longitudinal wave |
|---|-----------------|-------------------|
| A | light           | water ripples     |
| В | radio           | sound             |
| С | sound           | light             |
| D | water ripples   | radio             |

**41** The diagram shows a water wave in a ripple tank.




The wave has a speed of 12 cm/s at R.

The wave crosses a boundary **PQ** where the distance between crests changes from 3.0 cm to 1.5 cm.

What is the velocity of the wave at point **S**?

- **A** 3.0 cm/s
- **B** 6.0 cm/s
- **C** 12 cm/s
- **D** 24 cm/s

42 The diagram shows the variation of the displacement of a wave with distance from the source.



distance from source/cm

What is the amplitude of the wave?

- **A** 2.0 cm
- **B** 4.0 cm
- **C** 20 cm
- **D** 40 cm

