Physical Quantities \& Units Mark Scheme 1

Level	International A Level
Subject	Physics
Exam Board	CIE
Topic	Physical Quantities \& Units
Sub Topic	
Paper Type	Theory
Booklet	Mark Scheme 1

Time Allowed:	90 minutes				
Score:	/75				
Percentage:	/100				
A* A	B	C	D	E	U
>85\% '77.5\%	70\%	62.5\%	57.5\%	45\%	<45\%

1 (a power = work/time or energy/time or (force \times distance)/time

$$
=\mathrm{kg} \mathrm{~m} \mathrm{~s}^{-2} \times \mathrm{ms}^{-1}=\mathrm{kg} \mathrm{~m}^{2} \mathrm{~s}^{-3}
$$

(b) power $=V I\left[\right.$ or V^{2} / R and $V=I R$ or $I^{2} R$ and $\left.V=I R\right]$ B1 (units of V :) $\mathrm{kg} \mathrm{m}^{2} \mathrm{~s}^{-3} \mathrm{~A}^{-1}$ B1

2 (a (work $=$) force \times distance or force \times displacement or $(W=) F \times d$ units of work: $\mathrm{kg} \mathrm{m} \mathrm{s}^{-2} \times \mathrm{m}=\mathrm{kg} \mathrm{m}^{2} \mathrm{~s}^{-2}$
(b) (p.d. $=$) work (done) or energy (transformed) (from electrical to other forms) B1
(c) $R=V / I$
units of $V: \mathrm{kg} \mathrm{m}^{2} \mathrm{~s}^{-2} / \mathrm{As}$ and units of I : A
or
$R=P / I^{2}$ [or $P=V I$ and $V=I R$]
units of P : $\mathrm{kg} \mathrm{m}^{2} \mathrm{~s}^{-3}$ and units of I : A
or
$R=V^{2} / P$
units of V : $\mathrm{kg} \mathrm{m}^{2} \mathrm{~s}^{-2} / \mathrm{As}$ and units of $P: \mathrm{kg} \mathrm{m}^{2} \mathrm{~s}^{-3}$
units of R : $\left(\mathrm{kg} \mathrm{m}^{2} \mathrm{~s}^{-2} / \mathrm{A}^{2} \mathrm{~s}=\right) \mathrm{kg} \mathrm{m}^{2} \mathrm{~s}^{-3} \mathrm{~A}^{-2}$
(b) distance $=2 \times(42.3-6.38) \times 10^{6}\left(=7.184 \times 10^{7} \mathrm{~m}\right)$
$($ time $=) 7.184 \times 10^{7} /\left(3.0 \times 10^{8}\right)=0.24(0.239) \mathrm{s}$
(c) units of pressure $P: \mathrm{kgm} \mathrm{s}^{-2} / \mathrm{m}^{2}=\mathrm{kg} \mathrm{m}^{-1} \mathrm{~s}^{-2}$
simplification for units of $C: C=v^{2} \rho / P$ units: $\left(\mathrm{m}^{2} \mathrm{~s}^{-2} \mathrm{~kg} \mathrm{~m}^{-3}\right) / \mathrm{kg} \mathrm{m}^{-1} \mathrm{~s}^{-2}$ and cancelling to give no units for C

A1
(d) energy and power (both underlined and no others)

A1
(e) (i) vector triangle of correct orientation
three arrows for the velocities in the correct directions
A1
(ii) length measured from scale diagram $5.2 \pm 0.2 \mathrm{~cm}$ or components of boat speed determined parallel and perpendicular to river flow

$$
\text { velocity } \left.=2.6 \mathrm{~m} \mathrm{~s}^{-1} \text { (allow } \pm 0.1 \mathrm{~m} \mathrm{~s}^{-1}\right)
$$

4 (a temperature current

B1
(allow amount of substance and luminous intensity)
(b) base units of force constant: $\mathrm{kgms}^{-2} \mathrm{~m}^{-1}$ or $\mathrm{kg} \mathrm{s}^{-2}$

(a ampere	B1
kelvin (allow mole and candela) B1	

(b) (i) stress: Nm^{-2}

C1
$\mathrm{kgms}^{-2} / \mathrm{m}^{2}=\mathrm{kgm}^{-1} \mathrm{~s}^{-2}$
A1
(ii) Young modulus $=$ stress/strain and strain has no units hence units: $\mathrm{kg} \mathrm{m}^{-1} \mathrm{~s}^{-2}$

6 (a displacement/velocity/acceleration/momentum/etc. three correct (none wrong) 2, two correct (none or one wrong) 1
(b) (i) $Y=70 \mathrm{~N}$ [allow 71 N as $+1 / 2$ small square on graph]
(ii) $\theta=90^{\circ}$
(for equilibrium) the direction of Y must be opposite to Z
or using $Y \sin \theta=Z$, hence $\sin \theta=70 / 70=1, \theta=90^{\circ}$
(iii) 1. $Y \cos \theta=160$ and $Y \sin \theta=70$

$$
\tan \theta=70 / 160 \text { hence } \theta=23.6^{\circ}\left(24^{\circ}\right)
$$

A1
2. $Y=160 / \cos 23.6^{\circ}$ or $70 / \sin 23.6^{\circ}$

$$
=174.6 \text { or } 175 \text { or } 170 \mathrm{~N}
$$

A
or:

$$
\begin{equation*}
160^{2}+70^{2}=Y^{2} \tag{C1}
\end{equation*}
$$

$$
Y=174.6 \text { or } 175 \text { or } 170 \mathrm{~N}
$$

(c) (equilibrium not possible as) there is no vertical component from Y to balance $Z \quad B 1$

7 (a power = energy/time or work done/time force: $\mathrm{kg} \mathrm{m} \mathrm{s}^{-2}$ (including from mg in mgh or Fv)
or kinetic energy $\left(\frac{1}{2} m v^{2}\right)$: $\mathrm{kg}\left(\mathrm{m} \mathrm{s}^{-1}\right)^{2}$
B1
(distance: m and (time) ${ }^{-1}: \mathrm{s}^{-1}$) and hence power: $\mathrm{kg} \mathrm{m} \mathrm{s}^{-2} \mathrm{~ms}^{-1}=\mathrm{kg} \mathrm{m}^{2} \mathrm{~s}^{-3}$
B1
(b) $Q / t: \mathrm{kgm}^{2} \mathrm{~s}^{-3}$ C1
$A: \mathrm{m}^{2}$ and $x: \mathrm{m}$ and $T: \mathrm{K} \quad \mathrm{C} 1$ correct substitution into $C=(Q x) / t A T$ or equivalent, or with cancellation C1 units of $C: \mathrm{kg} \mathrm{m} \mathrm{s}^{-3} \mathrm{~K}^{-1}$ A1

8 (a current, mass and temperature two correct $2 / 2$, one omission or error $1 / 2$
(b) $\sigma:$ no units, $V: m^{3}$ C1
$E_{\mathrm{p}}: \mathrm{kg} \mathrm{m}^{2} \mathrm{~s}^{-2}$ C1
C: $\mathrm{kg} \mathrm{m}^{2} \mathrm{~s}^{-2} \times \mathrm{m}^{-3}=\mathrm{kgm}^{-1} \mathrm{~s}^{-2}$ A1

9 (a kelvin / K B1 ampere / amp / A B1 [allow mole / mol and candela / Cd]
(b) (i) energy OR work = force \times distance [allow any energy expression] C1 units: $\mathrm{kg} \mathrm{m} \mathrm{s}^{-2} \times \mathrm{m}$ OR ${\mathrm{kg}\left(\mathrm{m} \mathrm{s}^{-1}\right)^{2} \text { for } 1 / 2 m v^{2} \text { or } m c^{2}}_{\text {M1 }}$

$$
=\mathrm{kg} \mathrm{~m}^{2} \mathrm{~s}^{-2}
$$

(ignore any numerical factor)
(ii) units: $\rho: \mathrm{kgm}^{-3} \quad g: \mathrm{ms}^{-2} \quad A: \mathrm{m}^{2} \quad l_{0}: \mathrm{m}$ C1 $\begin{array}{lll}C: \mathrm{kgm}^{2} \mathrm{~s}^{-2} / \mathrm{kg}^{2} \mathrm{~m}^{-6} \mathrm{~m}^{2} \mathrm{~s}^{-4} \mathrm{~m}^{2} \mathrm{~m}^{3} & \text { [any subject] } & \mathrm{C} 1\end{array}$ $=\mathrm{kg}^{-1} \mathrm{~ms}^{2} \quad$ (allow $\mathrm{ms}^{2} / \mathrm{kg}$)

A1

```
volume \(=\pi\left(14 \times 10^{-3}\right)^{2} \times 12 \times 10^{-3}\left(=7.389 \times 10^{-6} \mathrm{~m}^{3}\right)\)
C1
density \(=\) mass \(/\) volume \(\quad\) [any subject] C1
mass \(=6.8 \times 10^{3} \times 7.389 \times 10^{-6}=0.0502\)
weight \(=m g\)
    \(=0.0502 \times 9.81=0.49 \mathrm{~N} \quad\) (mark not awarded if not to two s.f.)
C1
A1
```

(a power $=$ energy / time

$$
=(\text { force } \times \text { distance } / \text { time })=\mathrm{kg} \mathrm{~m}^{2} \mathrm{~s}^{-2} / \mathrm{s}
$$

$$
=\mathrm{kg} \mathrm{~m}^{2} \mathrm{~s}^{-3}
$$

(b) (i) units of $L^{2}: \mathrm{m}^{2}$ and units of $\rho: \mathrm{kg} \mathrm{m}^{-3}$ and units of $v^{3}: \mathrm{m}^{3} \mathrm{~s}^{-3}$
$\left(C=P / L^{2} \rho v^{3}\right.$) hence units of $C: \mathrm{kg} \mathrm{m}^{2} \mathrm{~s}^{-3} \mathrm{~m}^{-2} \mathrm{~kg}^{-1} \mathrm{~m}^{3} \mathrm{~m}^{-3} \mathrm{~s}^{3}$ or any correct statement of component units argument /discussion / cancelling leading to C having no units
(ii) power available from wind $=3.5 \times 10^{5} \times 100 / 55\left(=6.36 \times 10^{5}\right)$ $v^{3}=3.5 \times 10^{5} \times 100 /\left(55 \times 0.931 \times(25)^{2} \times 1.3\right)$ $v=9.4 \mathrm{~m} \mathrm{~s}^{-1}$ generator / conversion to electrical energy not 100\% efficient / heat produced in generator / bearings etc B1 (there must be cause of loss and where located)

