Physical Quantities & Units Mark Scheme 1

Level	International A Level
Subject	Physics
Exam Board	CIE
Торіс	Physical Quantities & Units
Sub Topic	
Paper Type	Theory
Booklet	Mark Scheme 1
Time Allowed:	90 minutes
Score:	/75
Percentage:	/100
A* A	B C D E U
>85% '77.5%	70% 62.5% 57.5% 45% <45%

(a	power = work/time or energy/time or (force × distance)/time	B1
----	---	----

$$= kgm s^{-2} \times m s^{-1} = kgm^2 s^{-3}$$
 A1 [2]

(b) power =
$$VI$$
 [or V^2/R and $V = IR$ or I^2R and $V = IR$] B1

2 (a (work =) force × distance or force × displacement or (W =) $F \times d$ M1 units of work: kg m s⁻² × m = kg m² s⁻² A1 [2]

(b)
$$(p.d. =) \frac{\text{work (done) or energy (transformed) (from electrical to other forms)}}{\text{charge}}$$
 B1 [1]

(c) R = V/IB1 units of V: $kg m^2 s^{-2}/A s$ and units of I: A C1 or $R = P/I^2$ [or P = VI and V = IR] units of P: kg m² s⁻³ and units of I: A (B1) (C1) or $R = V^2/P$ (B1) units of V: $kgm^2 s^{-2}/As$ and units of P: $kgm^2 s^{-3}$ (C1) units of *R*: $(kg m^2 s^{-2} / A^2 s =) kg m^2 s^{-3} A^{-2}$ A1 [3]

3	(a	150 or 1.5×10^2 Gm	A1	[1]
	(b)	distance = $2 \times (42.3 - 6.38) \times 10^6$ (= 7.184×10^7 m)	C1	
		(time =) $7.184 \times 10^7 / (3.0 \times 10^8) = 0.24 (0.239)$ s	А	[2]
	(c)	units of pressure <i>P</i> : kg m s ⁻² /m ² = kg m ⁻¹ s ⁻²	M1	
		units of density ρ : kg m ⁻³ and speed v: m s ⁻¹	M1	
		simplification for units of C: $C = v^2 \rho / P$ units: $(m^2 s^{-2} kg m^{-3}) / kg m^{-1} s^{-2}$ and cancelling to give no units for C	A1	[3]
	(d)	energy and power (both underlined and no others)	A1	[1]
	(e)	(i) vector triangle of correct orientation	M1	
		three arrows for the velocities in the correct directions	A1	[2]
		 (ii) length measured from scale diagram 5.2 ± 0.2 cm or components of boat speed determined parallel and perpendicular to river flow 	C1	
		velocity = 2.6 m s ⁻¹ (allow $\pm 0.1 \text{m s}^{-1}$)	A1	[2]
4	(a	temperature current (allow amount of substance and luminous intensity)	B1	[2]
	(b)	base units of force constant: kg m s ⁻² m ⁻¹ or kg s ⁻² base units of time and mass: s and kg base units of C: s (kg s ⁻² /kg) ^{1/2} cancelling to show no units	B1 C1 B1	[3]

5	(a am kel ^s (all	ipere vin low mole and candela)	B1 B1	[2]
	(b) (i)	stress: N m ⁻² kg m s ⁻² /m ² = kg m ⁻¹ s ⁻²	C1 A1	[2]
	(ii)	Young modulus = stress/strain and <u>strain has no units</u> hence units: kg m ⁻¹ s ⁻²	B1	[1]
6	(a dis thi	splacement/velocity/acceleration/momentum/etc. ree correct (none wrong) 2, two correct (none or one wrong) 1	A2	[2]
	(b) (i)	Y = 70 N [allow 71 N as $+\frac{1}{2}$ small square on graph]	A1	[1]
	(ii)	$\theta = 90^{\circ}$	M1	
		(for equilibrium) the direction of Y must be <u>opposite</u> to Z		
		or using Y sin θ = Z, hence sin θ = 70 / 70 = 1, θ = 90°	A1	[2]
	(iii)	1. $Y \cos \theta = 160$ and $Y \sin \theta = 70$	C1	
		$\tan \theta = 70/160 \text{ hence } \theta = 23.6^{\circ} (24^{\circ})$	A1	[2]
		2. Y = 160 / cos 23.6° or 70 / sin 23.6° = 174.6 or 175 or 170 N	C1 A	[2]
		or: $160^2 + 70^2 = Y^2$ Y = 174.6 or 175 or 170 N	(C1) (A1)	

(c) (equilibrium not possible as) there is no vertical component from Y to balance Z B1 [1]

7 (a power = energy/time <i>or</i> work done/time force: kg m s ⁻² (including from <i>mg</i> in <i>mgh</i> or <i>Fv</i>)			ver = energy/time <i>or</i> work done/time :e: kg m s ⁻² (including from <i>mg</i> in <i>mgh</i> or <i>Fv</i>)		
		or k	inetic energy $(\frac{1}{2}mv^2)$: kg (m s ⁻¹) ²	B1	
		(dis	tance: m and $(time)^{-1}$: s ⁻¹) and hence power: kg m s ⁻² m s ⁻¹ = kg m ² s ⁻³	B1	[3]
	(b)	Q/ <i>t</i> A: r corr unit	f^{+} : kg m ² s ⁻³ m ² and x: m and T: K rect substitution into C = (Qx) / tAT or equivalent, or with cancellation is of C : kg m s ⁻³ K ⁻¹	C1 C1 C1 A1	[4]
8	(а	curre two	ent, mass and temperature correct 2/2, one omission or error 1/2	A2	[2]
	(b)	σ: ι Ε _Ρ : Ι C: kg	no units, V: m ³ $kgm^2 s^{-2}$ $gm^2 s^{-2} \times m^{-3} = kgm^{-1} s^{-2}$	C1 C1 A1	[3]
9	(a		kelvin / K ampere / amp / A [allow mole / mol and candela / Cd]	B1 B1	[2]
	(b)	(i)	energy OR work = force × distance [allow any energy expression] units: kg m s ⁻² × m OR kg (m s ⁻¹) ² for $\frac{1}{2} mv^2$ or mc^2 (ignore any numerical factor)	C1 M1	[0]
				AU	[2]
		(ii)	units: ρ : kg m ⁻³ g: m s ⁻² A: m ² l_0 : m C: kg m ² s ⁻² / kg ² m ⁻⁶ m ² s ⁻⁴ m ² m ³ [any subject] = kg ⁻¹ m s ² (allow m s ² /kg)	C1 C1 A1	[3]

10	volume = $\pi (14 \times 10^{-3})^2 \times 12 \times 10^{-3} (=7.389 \times 10^{-6} \text{ m}^3)$ density = mass / volume [any subject]		C1 C1	
	weight	= mg = 0.0502 × 9.81 = 0.49 N (mark not awarded if not to two s	C1 A1	[4]
		ver = energy / time	C1	
11	(a pov	= (force × distance / time) = kg m ² s ⁻² / s	C1	
		$= \text{kg m}^2 \text{ s}^{-3}$	A1	[3]
	(b) (i)	units of L^2 : m ² and units of ρ : kg m ⁻³ and units of v^3 : m ³ s ⁻³ ($C = P / L^2 \rho v^3$) hence units of C: kg m ² s ⁻³ m ⁻² kg ⁻¹ m ³ m ⁻³ s ³	C1	
		or any correct statement of component units	M1	
		argument /discussion / cancelling leading to C having no units	A1	[3]
	(ii)	power available from wind = $3.5 \times 10^5 \times 100 / 55$ (= 6.36×10^5) C	
		$v^3 = 3.5 \times 10^5 \times 100 / (55 \times 0.931 \times (25)^2 \times 1.3)$	C1	
		$v = 9.4 \text{ m s}^{-1}$	A1	[3]
	(iii)	not all kinetic energy of wind converted to kinetic energy of bla generator / conversion to electrical energy not 100% efficient /	des B1 heat	
		produced in generator / bearings etc (there must be cause of loss and where located)	B1	[2]

<u>CHEMISTRY ONLINE</u> — TUITION —