Physical Quantities \& Units Mark Scheme 2

Level	International A Level
Subject	Physics
Exam Board	CIE
Topic	Physical Quantities \& Units
Sub Topic	
Paper Type	Theory
Booklet	Mark Scheme 2

1 (a force: $\mathrm{kg} \mathrm{m} \mathrm{s}^{-2}$ A1
(b) (i) $\quad I^{2}: \mathrm{A}^{2} \quad l: \mathrm{m} \quad x: \mathrm{m}$ C1
$K: \mathrm{kg} \mathrm{m} \mathrm{s}^{-2} A^{-2}$ A1
(ii) curve of the correct shape (for inverse proportionality) M1
clearly approaching each axis but never touching the axis A1
(iii) curving upwards and through origin A1
(a) spacing $=380$ or $3.8 \times 1 \mathrm{a}^{2} \mathrm{pm}$
(b) time $=24 \times 3600$
time $=0.086(0.0864) \mathrm{Ms}$
(c) time $=$ distance I speed $=\begin{gathered}1.5 \times 10^{11} \\ 3 \times 10^{8}\end{gathered}$ $=500(\mathrm{~s})=8.3 \mathrm{~min}$
(d) momentum and weight
(e) (i) arrow to the right of plane direction \{about 4° to 24°)
(ii) scale diagram drawn
or use of cosine formula ,,$l=250^{2}+36^{2}-2 \times 250 \times 36 \times \cos 45^{\circ}$
or resolving $v=\left[\left(36 \cos 45^{\circ}\right)^{2}+\left(250-36 \sin 45^{\circ}\right)\right]^{112}$
resultant velocity $=226$ (220-240 for scale diagram) ms^{-1}
allow one mark for values 210 to 219 or 241 to $250 \mathrm{~ms}^{-1}$ or use of formula $(v=51068) v=230(.226) \mathrm{ms}^{-1}$ A1 [2][1]
[1]
(a (i) V units: m^{3} (allow metres cubed or cubic metres) A1
(ii) Pressure units: $\mathrm{kg} \mathrm{m} \mathrm{s}^{-2} / \mathrm{m}^{2}$ (allow use of $P=\rho g h$) M1 Units: $\mathrm{kg} \mathrm{m}^{-1} \mathrm{~s}^{-2}$

A0
(b) V / t units: $\mathrm{m}^{3} \mathrm{~s}^{-1}$ B1
Clear substitution of units for P, r^{4} and l M1

$$
C=\frac{\pi P r^{4}}{8 V t^{-1} l}=\frac{\mathrm{kgm}^{-1} \mathrm{~s}^{-2} \mathrm{~m}^{4}}{\mathrm{~m}^{3} \mathrm{~s}^{-1} \mathrm{~m}}
$$

Units: $\mathrm{kg} \mathrm{m}^{-1} \mathrm{~s}^{-1}$
(8 or π in final answer-1. Use of dimensions max 2/3)
(a) scalar has magnitude/size, vector has magnitude/size and direction
(b) acceleration, momentum, weight B2
(-1 for each addition or omission but stop at zero)
(c) (i) horizontally: $7.5 \cos 40^{\circ} / 7.5 \sin 50^{\circ}=5.7(45) / 5.75$ not 5.8 N
(ii) vertically: $\quad \sin 40^{\circ} / 7.5 \cos 50^{\circ}=4.8(2) \mathrm{N}$
(d) either correct shaped triangle
correct labelling of two forces, three arrows and two angles
or correct resolving: $T_{2} \cos 40^{\circ}=T_{1} \cos 50^{\circ}$
$T_{1} \sin 50^{\circ}+T_{2} \sin 40^{\circ}=7.5$
$T_{1}=5.7(45)(\mathrm{N})$
A1
$T_{2}=4.8(\mathrm{~N})$
A1
(allow $\pm 0.2 \mathrm{~N}$ for scale diagram)
(a scalar has only magnitude
B1 vector has magnitude and direction
(b) kinetic energy, mass, power all three underlined
(c) (i) $s=u t+1 / 2 a t^{2}$
$15=0.5 \times 9.81 \times t^{2}$
C1
$T=1.7 \mathrm{~s}$
A1
if $g=10$ is used then -1 but only once on paper
(ii) vertical component v_{v} :
$v_{v}{ }^{2}=u^{2}+2$ as $=0+2 \times 9.81 \times 15$ or $v_{v}=u+a t=9.81 \times 1.7(5)$
$v_{v}=17.16$
C1
resultant velocity: $v^{2}=(17.16)^{2}+(20)^{2}$ $v=26 \mathrm{~m} \mathrm{~s}^{-1}$

A1
If $u=20$ is used instead of $u=0$ then $0 / 3$
Allow the solution using:
initial (potential energy + kinetic energy) = final kinetic energy
(iii) distance is the actual path travelled
displacement is the straight line distance between start and finish points (in that direction) / minimum distance

6 (a length, current, temperature, amount of substance, (luminous intensity) any three, 1 each
(b) (i) $F: \mathrm{kg} \mathrm{m} \mathrm{s}^{-2}$

B1
$\rho: \mathrm{kg} \mathrm{m}^{-3}$
B1
$v: \mathrm{m} \mathrm{s}^{-1}$
B1
(ii) some working e.g. $\mathrm{kg} \mathrm{m} \mathrm{s}^{-2}=\mathrm{m}^{2} \mathrm{~kg} \mathrm{~m}^{-3}\left(\mathrm{~m} \mathrm{~s}^{-1}\right)^{k}$ M1 hence $k=2$

$8 \quad$ (a allow $0.05 \mathrm{~mm} \rightarrow 0.15 \mathrm{~mm}$
(b) allow $0.25 \mathrm{~s} \rightarrow 0.5 \mathrm{~s}$
B [1]
(c) allow $8 \mathrm{~N} \rightarrow 12 \mathrm{~N}$
B
ignore number of significant figures
$9 \quad 10^{-9}$ B1
c B1
mega B1
tera B1[4]

10 (a e.g. time (s), current (A), temperature (K), amount of substance (mol), luminous intensity (cdl)
1 each, max 3 B3

unit of pressure: $\quad \mathrm{kg} \mathrm{m}^{-3} \mathrm{~m} \mathrm{~s}^{-2} \mathrm{~m} \ldots \ldots$

(allow $4 / 5$ for solution in terms of only dimensions)

