Ideal Gases

Question paper 1

Level	International A Level
Subject	Physics
Exam Board	CIE
Topic	Ideal Gases
Sub Topic	
Paper Type	Theory
Booklet	Question paper 1

Time Allowed: 57 minutes

Score: /47

Percentage: /100

A*	Α	В	С	D	Е	U
>85%	'77.5%	70%	62.5%	57.5%	45%	<45%

l (a	Define pressure.
(b) Use the kinetic model to explain the pressure exerted by a gas.
	[4]
(с	Explain whether the collisions between the molecules of an ideal gas are elastic or inelastic.
	[2]

Describe th	e observ	ations n	nade usin	g the ap	oaratus ii			
Describe the	e observ	ations n	nade usin	g the ap	paratus ii		4	
Describe the	e observ	ations n	nade usin	g the ap	paratus ii	n (a) .	4	
State and e	xplain tw	o concli	usions ab			n (a) .		
State and e	xplain tw	o concli	usions ab			n (a) .		
State and e	xplain tw	o concli	usions ab			n (a) .		
State and e from the ob	xplain tw servatior	o conclu	usions ab	out the p	roperties	n (a) .		
State and e from the ob.	xplain tw servatior	o conclu	usions ab	out the p	roperties	n (a) .		
State and e from the ob	xplain tw servatior	o conclu	usions ab	out the p	roperties	n (a) .		

(a) Describe apparatus that demonstrates Brownian motion. Include a diagram.

2

3	(a)	State two assumptions of the simple kinetic model of a gas.
	(-7	1
		1
		2
		[2]
	(b)	Use the kinetic model of gases and Newton's laws of motion to explain how a gas exerts a pressure on the sides of its container.
		[3]

Ļ	(a)	Explain the difference in densities in solids, liquids and gases using ideas of the spacing between molecules.
		[3]
	(b)	A hydrogen nucleus (proton) may be assumed to be a sphere of radius 1 10^{-15} m. Calculate the density of a hydrogen nucleus.
		density = kg m ⁻³ [3]
	(c)	The density of hydrogen gas in a pressurised cylinder is 4 kg m^{-3} . Suggest a reason why this density is much less than your answer in (b) .
		[1]
		TITTTTON

5	(a)	Sta	te the evidence for the assumption that
		(i)	there are significant forces of attraction between molecules in the solid state,
			[1]
		(ii)	the forces of attraction between molecules in a gas are negligible.
			[1]
	(b)	Ехр	lain, on the basis of the kinetic model of gases, the pressure exerted by a gas.
			[4]
	(c)	tem Sug	hid nitrogen has a density of $810\mathrm{kgm^{-3}}$. The density of nitrogen gas at room perature and pressure is approximately $1.2\mathrm{kgm^{-3}}$. gest how these densities relate to the spacing of nitrogen molecules in the liquid in the gaseous states.
			[2]

Some smoke particles are viewed through a microscope, as illustrated in Fig. 5.1. 6

Fig. 5.1

Brownian motion is observed.

(a)	Explain what is meant by Brownian motion.	
	[2	<u>2]</u>
(b)	Suggest and explain why Brownian motion provides evidence for the movement of molecules as assumed in the kinetic theory of gases.	of
		•••
	[2	2]
(c)	Smoke from a poorly maintained engine contains large particles of soot. Suggest why the Brownian motion of such large particles is undetectable.	
	rg	21

7 The Brownian motion of smoke particles in air may be observed using the apparatus shown in Fig. 2.1.

Fig. 2.1

(a)	Describe what is seen when viewing a smoke particle through the microscope.
	[2
(b)	Suggest and explain what difference, if any, would be observed in the movement o smoke particles when larger smoke particles than those observed in (a) are viewed through the microscope.
	[2

8	In a sample of	gas at room	temperature,	five atoms	have the	following	speeds:
---	----------------	-------------	--------------	------------	----------	-----------	---------

$$1.32 \times 10^3 \, \text{m s}^{-1}$$

$$1.50 \times 10^3 \, \mathrm{m \, s^{-1}}$$

$$1.46 \times 10^3 \, \text{m s}^{-1}$$

$$1.28 \times 10^3 \, \text{m s}^{-1}$$

$$1.64 \times 10^3 \,\mathrm{m\,s^{-1}}$$
.

For these five atoms, calculate, to three significant figures,

(a) the mean speed,

mean speed =
$$m s^{-1}$$
 [1]

(b) the mean-square speed,

mean-square speed =
$$\dots$$
 $m^2 s^{-2}$ [2]

(c) the root-mean-square speed.