Ideal Gases Mark Scheme 1

Level		Internation	al A Level		
Subject		Physics			
Exam Board		CIE			
Торіс		Ideal Gases	5		
Sub Topic					
Paper Type		Theory			
Booklet		Mark Sche	me 1		
Time Allowed:	57 minute	s			
Score:	/47				
Percentage:	/100				
A* A	В	С	D	E	U
>85% '77.5%	70%	62.5%	57.5%	45%	<45%

(a	pressure = force / area (normal to force)	A1	[1]
(b)	molecules/atoms/particles in (constant) random/haphazard motion molecules have a <u>change</u> in momentum when they collide with <u>the walls</u> (force exerted on molecules) therefore force on the walls reference to average force from many molecules/many collisions	B1 M1 A1 A1	[4]
(c)	elastic collision when <u>kinetic</u> energy conserved temperature constant for gas	B1 B1	[2]
(a	apparatus: cell with particles e.g. smoke (container must be closed) diagram showing suitable arrangement with light illumination and microscope	B1 B1	[2]
(b)	specks / flashes of light in random motion	M1 A1	[2]
(c)	cannot see what is causing smoke to move hence molecules smaller than smoke particles	(B1)	
	continuous motion of smoke particles implies continuous motion of molecules	(B1)	
	random motion of particles implies random motion of molecules	(B1)	
		max. 2	[2]
(a	any two of: large number of molecules / atoms / particles molecules in random motion no intermolecular forces elastic collisions time of collisions much less than time between collisions volume of molecules much less than volume of containing vessel	B1 + B1	[2]
(b)	molecules collide with the walls <u>change in momentum</u> of molecules implies force (on molecules) molecules exert equal and opposite force on wall pressure is averaging effect of many collisions (<i>any three statements, 1 each</i>)	В	[3]
	(a (b) (c) (a (b) (b)	 (a pressure = force / area (normal to force) (b) molecules/atoms/particles in (constant) random/haphazard motion molecules have a <u>change</u> in momentum when they collide with <u>the walls</u> (force exerted on molecules) therefore force on the walls reference to average force from many molecules/many collisions (c) elastic collision when <u>kinetic</u> energy conserved temperature constant for gas (a apparatus: cell with particles e.g. smoke (container must be closed) diagram showing suitable arrangement with light illumination and microscope diagram showing suitable arrangement with light illumination and microscope (b) specks / flashes of light in random motion (c) cannot see what is causing smoke to move hence molecules smaller than smoke particles continuous motion of smoke particles implies continuous motion of molecules random motion of particles implies random motion of molecules (a any two of: large number of molecules / atoms / particles molecules in random motion no intermolecular forces elastic collisions time of collisions much less than time between collisions volume of molecules much less than volume of containing vessel (b) molecules collide with the walls <u>change in momentum</u> of molecules implies force (on molecules) molecules (<i>any three statements, 1 each</i>) 	(a pressure = force / area (normal to force) A1 (b) molecules/atoms/particles in (constant) random/haphazard motion molecules have a <u>change</u> in momentum when they collide with <u>the walls</u> (force exerted on molecules) herefore force on the walls B1 (c) elastic collision when <u>kinetic</u> energy conserved temperature constant for gas B1 (a apparatus: cell with particles e.g. smoke (container must be closed) diagram showing suitable arrangement with light illumination and microscope B1 (b) specks / flashes of light in random motion M1 (c) cannot see what is causing smoke to move hence molecules smaller than smoke particles (B1) (c) cannot see what is causing smoke to move hence molecules smaller than smoke particles implies continuous motion of molecules (B1) (a any two of: Iarge number of molecules / atoms / particles molecules smaller than smoke particles implies continuous motion of molecules (B1) (a any two of: Iarge number of molecules / atoms / particles molecules collisions time of collisions much less than time between collisions E1 + B1 (b) molecules collide with the walls <u>change in momentum</u> of molecules implies force (on molecules) molecules averaging effect of many collisions (<i>any three statements, 1 each</i>) B1

4	(a	density in solids and liquids similar spacing in solids and liquids about the same density in gases <u>much</u> less as spacing in gases much greater	M A B	1 1 1 [3]
	(b)	density = mass / volume mass = 1.67×10^{-27} kg and volume = $4/3 \pi r^3$ density = $(1.67 \times 10^{-27}) / 4/3 \times \pi \times (1.0 \times 10^{-15})^3$	C C	1 1
		$= 3.99 \times 10^{17} \text{ kg m}^{-3}$	A	1 [3]
	(c)	atoms / molecules composed of large amount of empty space / nucleus has small volume compared to volume of atom / space between atoms in a gas very large	s very is B	1 [1]
_	,		54	
5	(a	(i) solid has fixed volume and fixed shape/incompressible	B1	[1]
		(ii) gas fills any space into which it is put	B1	[1]
	(b)	atoms/molecules have (elastic) collisions with the walls (of the vessel)	B1	
		momentum of atom/molecule changes <u>so</u> impulse (on wall)/force on wall random motion/many colligions (por unit time) gives rise to	B1 B1	
		(constant) force/pressure	B1	[4]
	(c)	spacing (much) greater in gases than in liquids/about ten times of the spacing depends on $1/3\sqrt{2}$	C1	
		or ratio of spacings is about 8.8	A1	[2]
6	(a	haphazard / random / erratic / zig-zag movement of (smoke) particles (<i>do not allow molecules / atoms</i>)	M1 A	[2]
	(b)	motion is due to unequal / unbalanced collision rate <u>s</u> (on different faces) (unequal collision rate due to) random motion of (gas) molecules / atoms	B1 B1	[2]
	(c)	either collisions with air molecules average out	M1	
	. /	this prevents haphazard motion <i>or</i> particle is more massive / heavier / has large inertia (M1) collision <u>s</u> cause only small movements / accelerations (A1)	A1	[2]

7	(a)	speck of light that moves haphazardly/randomly/jerkily/etc.	B1 B1	[2]
	(b)	randomness of collisions would be 'averaged out' so less (haphazard) movement (do not allow 'more massive so less movement')	B1 B1	[2]

8 (a mean speed = $1.44 \times 10^3 \text{ m s}^{-1}$ (b) evidence of summing of individual squared speeds mean square speed = $2.09 \times 10^6 \text{ m}^2 \text{ s}^{-2}$ (c) root-mean-square speed = $1.45 \times 10^3 \text{ m s}^{-1}$ A1 [1] A1 [1] A1 [1]

(c) root-mean-square speed = $1.45 \times 10^3 \text{ m s}^{-1}$ A1 [1] (allow ECF from (b) but only if arithmetic error)

<u>CHEMISTRYONLINE</u> — TUITION —