Ideal Gases

Mark Scheme 2

Level	International A Level
Subject	Physics
Exam Board	CIE
Topic	Ideal Gases
Sub Topic	
Paper Type	Theory
Booklet	Mark Scheme 2

Time Allowed:	58 minutes				
Score:	/48				
Percentage:	/100				
A* A	B	C	D	E	U
>85\% '77.5\%	70\%	62.5\%	57.5\%	45\%	<45\%

1 (a) obeys the equation $p V / T=$ constant (accept $p V=n R T$)
(b) ($\quad p V=n R T$

$$
\begin{equation*}
5.0 \times 10^{7} \times 3.0 \times 10^{-4}=n \times 8.31 \times 296 \text { giving } n=6.1 \mathrm{~mol} \tag{2}
\end{equation*}
$$

(ii) pressure \propto amount of substance

$$
\begin{array}{rlrl}
\text { loss } & =0.40 / 100 \times 6.1 \mathrm{~mol}=0.0244 \mathrm{~mol} & & \\
& =0.0244 \times 6.02 \times 10^{23}(\text { atoms }) & \mathrm{C} 1 \\
& =1.47 \times 10^{22} \text { atoms } & \mathrm{C} 1 \\
\text { rate } & =\left(1.47 \times 10^{22}\right) /(35 \times 24 \times 60 \times 60) & & \\
& =4.9 \times 10^{15} \mathrm{~s}^{-1} & \mathrm{~A} 1
\end{array}
$$

(a) initially, $p V / T=\left(2.40 \times 10^{5} \times 5.00 \times 10^{-4}\right) / 288=0.417 \quad$ M1
finally, $p V / T=\left(2.40 \times 10^{5} \times 14.5 \times 10^{-4}\right) / 835=0.417$
ideal gas because $p V / T$ is constant
(allow 2 marks for two determinations of V / T and then 1 mark for V / T and p constant, so ideal)
(b) (work done $=p \Delta V$

$$
\begin{aligned}
& =2.40 \times 10^{5} \times(14.5-5.00) \times 10^{-4} \\
& =228 \mathrm{~J} \text { (ignore sign, not } 2 \text { s.f. })
\end{aligned}
$$

(ii) $\Delta U=q+w=569-228$

$$
=341 \mathrm{~J}
$$

(a) the number of atoms

M1 in 12 g of carbon-12
(b) (amount $=3.2 / 40$

$$
=0.080 \mathrm{~mol}
$$

(ii) $p V=n R T$

$$
\begin{aligned}
p \times & 210 \times 10^{-6}=0.080 \times 8.31 \times 310 \\
p= & 9.8 \times 10^{5} \mathrm{~Pa} \\
& \left(\text { do not credit if } T \text { in }{ }^{\circ} \mathrm{C} \text { not } \mathrm{K}\right)
\end{aligned}
$$

(iii) either $p V=1 / 3 \times N m\left\langle c^{2}\right\rangle$

$$
N=0.080 \times 6.02 \times 10^{23}\left(=4.82 \times 10^{22}\right)
$$

$$
\text { and } m=40 \times 1.66 \times 10^{-27}\left(=6.64 \times 10^{-26}\right)
$$

$9.8 \times 10^{5} \times 210 \times 10^{-6}=1 / 3 \times 4.82 \times 10^{22} \times 6.64 \times 10^{-26} \times\left\langle c^{2}\right\rangle$ $\left\langle c^{2}\right\rangle=1.93 \times 10^{5}$
$c_{\text {RMS }}=440 \mathrm{~m} \mathrm{~s}^{-1}$
or $\quad=3.2 \times 10^{-3}$
$9.8 \times 10^{5} \times 210 \times 10^{-6}=1 / 3 \times 3.2 \times 10^{-3} \times\left\langle c^{2}\right\rangle$
$\left\langle c^{2}\right\rangle=1.93 \times 10^{5}$
$c_{\text {RMS }}=440 \mathrm{~m} \mathrm{~s}^{-1}$
or $\quad 1 / 2 m<c^{2}>=3 / 2 k T$
$1 / 2 \times 40 \times 1.66 \times 10^{-27}\left\langle c^{2}\right\rangle=3 / 2 \times 1.38 \times 10^{-23} \times 310$
$\left\langle c^{2}\right\rangle=1.93 \times 10^{5}$
$c_{\text {RMS }}=440 \mathrm{~m} \mathrm{~s}^{-1}$

A1

C1
C

A1
C1
A1
[2]
[3]
[1]
A1
[2]

(if T in ${ }^{\circ} \mathrm{C}$ not K award max $1 / 3$, unless already penalised in (b)(ii))
(a use of kelvin temperatures
(allow use of $n=1$. Do not allow other values of n.)
(b) (i) work done $=p \Delta V$

$$
\begin{aligned}
& =4.2 \times 10^{5} \times(3.87-3.49) \times 10^{3} \times 10^{-6} \\
& =160 \mathrm{~J}
\end{aligned}
$$

(do not allow use of V instead of ΔV)
(ii) increase/change in internal energy $=$ heating of system

$$
\begin{aligned}
& \text { + work done on system } \\
& =565-160 \\
& =405 \mathrm{~J}
\end{aligned}
$$

A
(c) internal energy $=$ sum of kinetic energy and potential energy $/ E_{K}+E_{P}$

B1 no intermolecular forces M1 no potential energy (so $\Delta U=\Delta E_{K}$)

A
(a (i) N : (total) number of molecules
B1
(ii) $\left\langle c^{2}\right\rangle$: mean square speed/velocity

B1
(b) $p V=\frac{1}{3} N m<c^{2}>=N k T$
(mean) kinetic energy $\left.=1 / 2 m<c^{2}\right\rangle$
algebra clear leading to $\left.1 / 2 m<c^{2}\right\rangle=(3 / 2) k T$
C1
A1
(c) (either energy required $\begin{array}{rlrl} & =(3 / 2) \times 1.38 \times 10^{-23} \times 1.0 \times 6.02 \times 10^{23} & & \mathrm{C} 1 \\ & =12.5 \mathrm{~J}(12 \mathrm{~J} \text { if } 2 \mathrm{~s} . f .) & \mathrm{A}\end{array}$
or \quad energy $=(3 / 2) \times 8.31 \times 1.0$

$$
\begin{equation*}
=12.5 \mathrm{~J} \tag{C1}
\end{equation*}
$$

(ii) energy is needed to push back atmosphere/do work against atmosphere so total energy required is greaterA1

6 (a obeys the equation $p V=$ constant $\times T$ or $p V=n R T$
M1
p, V and T explained
at all values of p, V and $T /$ fixed mass $/ n$ is constant
(b) $\left(3.4 \times 10^{5} \times 2.5 \times 10^{3} \times 10^{-6}=n \times 8.31 \times 300\right.$
$n=0.34 \mathrm{~mol}$
(ii) for total mass/amount of gas
$3.9 \times 10^{5} \times(2.5+1.6) \times 10^{3} \times 10^{-6}=(0.34+0.20) \times 8.31 \times T$ $T=360 \mathrm{~K}$
(c) when tap opened gas passed (from cylinder B) to cylinder A work done on gas in cylinder A (and no heating) so internal energy and hence temperature increase

B1 M1
A1
A1

