Ideal Gases Mark Scheme 2

Level		Internati	onal A Level				
Subject		Physics					
Exam Board		CIE					
Торіс		Ideal Ga	ses				
Sub Topic							
Paper Type		Theory					
Booklet		Mark Sch	neme 2				
Time Allowed:	58 minut	es					
Score:	/48	/48					
Percentage:	/100						
A* A	В	С	D	E	U		
>85% '77.5%	70%	62.5%	57.5%	45%	<45%		

1	(a)	obe <i>(ac</i>	eys the equation pV/T = constant cept $pV = nRT$)	B1	[1]
	(b)	(pV = nRT 5.0 × 10 ⁷ × 3.0 × 10 ⁻⁴ = $n \times 8.31 \times 296$ giving $n = 6.1$ mol	C1	[2]
		(ii)	pressure \propto amount of substance loss = 0.40/100 × 6.1 mol = 0.0244 mol = 0.0244 × 6.02 × 10 ²³ (atoms) = 1.47 × 10 ²² atoms	C1 C1	
			rate = $(1.47 \times 10^{22})/(35 \times 24 \times 60 \times 60)$ = $4.9 \times 10^{15} \text{ s}^{-1}$	A1	[4]

2 (a) initially, $pV/T = (2.40 \times 10^5 \times 5.00 \times 10^{-4})/288 = 0.417$ M1 finally, $pV/T = (2.40 \times 10^5 \times 14.5 \times 10^{-4})/835 = 0.417$ M1 ideal gas because pV/T is constant (allow 2 marks for two determinations of V/T and then 1 mark for V/T and p constant, so ideal)

(b)	(work done = $p\Delta V$ = 2.40 × 10 ⁵ × (14.5 - 5.00) × 10 ⁻⁴ = 228 J (<i>ignore sign, not 2 s.f.</i>)	C1 A	[2]
	(ii)	$\Delta U = q + w = 569 - 228 = 341 \mathrm{J}$	М	
		increase	A1	[2]

3	(a) the in 1	e number of atoms 12 g of carbon-12		
	(b) (amount = 3.2/40 = 0.080 mol	A1	[1]
	(ii)	pV = nRT $p \times 210 \times 10^{-6} = 0.080 \times 8.31 \times 310$ $p = 9.8 \times 10^{5} Pa$ (do not credit if T in °C not K)	C1 A1	[2]
	(iii)	either $pV = 1/3 \times Nm < c^2$ $N = 0.080 \times 6.02 \times 10^{23} (= 4.82 \times 10^{22})$ and $m = 40 \times 1.66 \times 10^{-27} (= 6.64 \times 10^{-26})$ $9.8 \times 10^5 \times 210 \times 10^{-6} = 1/3 \times 4.82 \times 10^{22} \times 6.64 \times 10^{-26} \times < c^2$ $< c^2 > = 1.93 \times 10^5$ $c_{\text{RMS}} = 440 \text{ m s}^{-1}$	C1 C A1	[3]
		or = 3.2×10^{-3} $9.8 \times 10^5 \times 210 \times 10^{-6} = 1/3 \times 3.2 \times 10^{-3} \times \langle c^2 \rangle$ $\langle c^2 \rangle = 1.93 \times 10^5$ $c_{\text{RMS}} = 440 \text{ m s}^{-1}$	(C1) (C1) (A1)	
		or $1/2 \ m < c^2 > = 3/2 \ kT$ $1/2 \times 40 \times 1.66 \times 10^{-27} < c^2 > = 3/2 \times 1.38 \times 10^{-23} \times 310$ $< c^2 > = 1.93 \times 10^5$	(C1) (C1)	
		c _{RMS} = 440 m s [·] (if T in °C not K award max 1/3, unless already penalised in (b)(ii))	(A1)	

<u>CHEMISTRY ONLINE</u> — TUITION —

4	(a	use bot	e of kelvin h values (temperatures of (<i>V</i> / <i>T</i>) correct (11.87), <i>V</i> /	<i>T</i> is constant so pressure is constant	B1 M1	[2]
		(all	ow use oi	f $n = 1$. Do not allow other va	alues of n.)		
	(b)	(i)	work do	ne = $p\Delta V$ = 4.2 × 10 ⁵ × (3.87 - 3.4 = 160 J	$49)\times10^3\times10^{-6}$	C1 A1	[2]
			(do not a	allow use of V instead of ΔV)		
		(ii)	increase	e/change in internal energy	 heating of system work done on system 565 160 	C1	
					= 303 - 100 = 405 J	A	[2]
	(c)	inte no no	ernal ener intermole potential	rgy = sum of kinetic energy ocular forces energy (so $\Delta U = \Delta E_{\rm K}$)	and potential energy/ $E_{\rm K} + E_{\rm P}$	B1 M1 A	[3]
5	(a	(i)	N: (total)) number of <u>molecules</u>		B1	[1]
		(ii)	< <i>c</i> ²>: me	ean square speed/velocity		B1	[1]
	(b)	pV (me alge	= ⅓ <i>Nm<c< i=""> ean) kinet ebra clea</c<></i>	$c^{2} > = NkT$ ic energy = $\frac{1}{2} m < c^{2} >$ r leading to $\frac{1}{2} m < c^{2} > = (3/2)$	kΤ	C1 A1	[2]
	(c)	(either or	energy required = (3/2) × 1. = 12.5 J (1 energy = (3/2) × 8.31 × 1.0 = 12.5 J	$.38 \times 10^{-23} \times 1.0 \times 6.02 \times 10^{23}$ 2 <i>J</i> if 2 s.f.)	C1 A (C1) (A1)	[2]
		(ii)	energy atmosph so total e	is needed to push ba nere energy required is greater	ck atmosphere/do work against	A1	[2]

6	(a	obe <i>p, V</i> at a	M1 A1 A1	[3]	
	(b)	($3.4 \times 10^5 \times 2.5 \times 10^3 \times 10^{-6} = n \times 8.31 \times 300$ n = 0.34 mol	M1	[1]
		(ii)	for total mass/amount of gas $3.9 \times 10^5 \times (2.5 + 1.6) \times 10^3 \times 10^{-6} = (0.34 + 0.20) \times 8.31 \times T$ T = 360 K	C1 A	[2]
	(c)	whe gas worl so ir	en tap opened passed (from cylinder B) to cylinder A k done <u>on</u> gas in cylinder A (and no heating) nternal energy and hence temperature increase	B1 M1 A1	[3]

