Ideal Gases
 Mark Scheme 3

Level	International A Level
Subject	Physics
Exam Board	CIE
Topic	Ideal Gases
Sub Topic	
Paper Type	Theory
Booklet	Mark Scheme 3

Time Allowed:	72 minutes						
Score:	/60						
Percentage:	/100						
A	A	B	C	D	E	U	
$>85 \%$	$' 77.5 \%$	70%	62.5%	57.5%	45%	$<45 \%$	

$1 \quad$ (a (i) 1. $p V=n R T$
$1.80 \times 10^{-3} \times 2.60 \times 105=n \times 8.31 \times 297 \quad \mathrm{C} 1$
$n=0.19 \mathrm{~mol} \quad \mathrm{~A} 1$
2. $\Delta q=m c \Delta T$
$95.0=0.190 \times 12.5 \times \Delta T \quad$ B1
$\Delta T=40 \mathrm{~K}$ A1
(allow 2 marks for correct answer with clear logic shown)
(ii) $\mathrm{p} / \mathrm{T}=\mathrm{constant}$
$\left(2.6 \times 10^{5}\right) / 297=p /(297+40) \quad$ M1 $p=2.95 \times 10^{5} \mathrm{~Pa} \quad \mathrm{~A} 0$
(b) change in internal energy is $120 \mathrm{~J} / 25 \mathrm{~J} \quad \mathrm{~B} 1$ internal energy decreases / $\underline{\Delta} U$ is negative / kinetic energy of molecules decreases M1 so temperature lower

$\left(2.6 \times 10^{5}\right) / 297=p /(297+40)$	M1
$p=2.95 \times 10^{5} \mathrm{~Pa}$	A 0

\pm

2 (a (i) number of molecules
(ii) mean square speed
[
2. either $N=n N_{\mathrm{A}}$
$=5.4 \times 6.02 \times 10^{23}$
$=3.26 \times 10^{24}$
or
$p V=N k T$
$N=\left(6.1 \times 10^{5} \times 2.1 \times 10^{4} \times 10^{-6}\right) /\left(1.38 \times 10^{-23} \times 285\right)$
$N=3.26 \times 10^{24}$
(ii) either $6.1 \times 10^{5} \times 2.1 \times 10^{-2}=1 / 3 \times 3.25 \times 10^{24} \times 4 \times 1.66 \times 10^{-27} \times\left\langle c^{2}\right\rangle$
$c_{\text {RMS }}=1.33 \times 10^{3} \mathrm{~m} \mathrm{~s}^{-1}$
$\frac{\text { or }}{1 / 2} \times 4 \times 1.66 \times 10^{-27} \times\left\langle c^{2}\right\rangle=\frac{3}{2} \times 1.38 \times 10^{-23} \times 285$
$\left\langle c^{2}\right\rangle=1.78 \times 10^{6}$
$c_{\text {RMS }}=1.33 \times 10^{3} \mathrm{~m} \mathrm{~s}^{-1}$
C1
A1

A1
[3]

3
3 (a
(a (i) either random motion
or constant velocity until hits wall/other molecule B1
(ii) (total) volume of molecules is negligible M1
compared to volume of containing vessel
A1
or
radius/diameter of a molecule is negligible
compared to the average intermolecular distance
(b) either molecule has component of velocity in three directions
or $\quad c^{2}=c_{X}{ }^{2}+c_{Y}{ }^{2}+c_{Z}^{2} \quad$ M1
random motion and averaging, so $\left\langle c_{x}^{2}\right\rangle=\left\langle c_{y}^{2}\right\rangle=\left\langle c_{z}^{2}\right\rangle \quad \mathrm{M}$
$\left.\left\langle c^{2}\right\rangle=3<c_{x}^{2}\right\rangle$
A1
so, $p V=1 / 3 \mathrm{Nm}\left\langle c^{2}\right\rangle$
(c) $\left\langle c^{2}\right\rangle \propto T$ or $c_{\text {rms }} \propto \sqrt{T}$

C1
temperatures are 300 K and 373 K C 1
$c_{\text {rms }}=580 \mathrm{~m} \mathrm{~s}^{-1}$ A1

$$
\left\langle c^{2}\right\rangle=1.78 \times 10^{6}
$$

4 (a) e.g. moving in random (rapid) motion of molecules/atoms/particles no intermolecular forces of attraction/repulsion volume of molecules/atoms/particles negligible compared to volume of container time of collision negligible to time between collisions (1 each, max 2) B2
(b) (i) 1. number of (gas) molecules B1
2. mean square speed/velocity (of gas molecules)
(ii) either $p V=N k T$ or $p V=n R T$ and links n and k
and $\left\langle E_{k}\right\rangle=1 / 2 m\left\langle c^{2}\right\rangle$
clear algebra leading to $\left\langle E_{K}\right\rangle=\frac{3}{2} k T$
M
A1
(c) (i) sum of potential energy and kinetic energy of molecules/atoms/particles reference to random (distribution)

M1 A1
(ii) no intermolecular forces so no potential energy
(change in) internal energy is (change in) kinetic energy and this is proportional to (change in) T
(a) number of atoms of carbon-12 M1
in 0.012 kg of carbon-12 A1
(b) $p V=N k T$ or $p V=n R T$
substitutes temperature as 298 K
either $1.1 \times 10^{5} \times 6.5 \times 10^{-2}=N \times 1.38 \times 10^{-23} \times 298$
or $\quad 1.1 \times 10^{5} \times 6.5 \times 10^{-2}=n \times 8.31 \times 298$ and $n=N / 6.02 \times 10^{23}$ $N=1.7 \times 10^{24}$

C1
[1]
(a) amount of substance
containing same number of particles as in 0.012 kg of carbon-12
(b) $p V=n R T$
amount $=\left(2.3 \times 10^{5} \times 3.1 \times 10^{-3}\right) /(8.31 \times 290)$
$+\left(2.3 \times 10^{5} \times 4.6 \times 10^{-3}\right) /(8.31 \times 303)$
$=0.296+0.420$ C1
$=0.716 \mathrm{~mol}$ A1
(give full credit for starting equation $p V=N k T$ and $N=n N_{A}$)

7 (a (i) no forces (of attraction or repulsion) between atoms / molecules / particles
(ii) sum of kinetic and potential energy of atoms / molecules M1
due to random motion
(iii) (random) kinetic energy increases with temperature M1 no potential energy
(so increase in temperature increases internal energy)
(b) (i) zero
(ii) work done $=p \Delta V$

$$
\begin{aligned}
& =4.0 \times 10^{5} \times 6 \times 10^{-4} \\
& =240 \mathrm{~J} \quad \text { (ignore any sign) }
\end{aligned}
$$

(iii)

change	work done / J	heating / J	increase in internal energy / J
$P \rightarrow Q$	$\mathbf{+ 2 4}$	-60	-36
$Q \rightarrow R$	0	+72	+72
$R \rightarrow P$	-84	+48	-36

(correct signs essential)
(each horizontal line correct, 1 mark - max 3)
B

