Temperature Mark Scheme 1

Level		International A	Level	
Subject		Physics		
Exam Board		CIE		
Торіс		Temperature		
Sub Topic				
Paper Type		Theory		
Booklet		Mark Scheme	1	
Time Allowed:	65 minutes	5		
Score:	/54			
Percentage:	/100			
A* A	В	C D)N =	U
>85% '77.5%	70%	62.5% 57	.5% 45%	<45%

1	(a) (i)) at 22.5 °C, R_T = 1600 Ω or 1.6 k Ω total resistance = 800 Ω	C1 A1	[2]
		(ii)) either use of potential divider formula or current = 9 / 2000 (4.5 mA)	C1	
			$V = (0.8/2.0) \times 9 \qquad V = (9/2000) \times 800 = 3.6 V = 3.6 V$	A1	[2]
	(b) (i)) total resistance = $4/5 \times 1200$ = 960Ω	C1 A1	[2]
		(ii)) for parallel combination, 1/960 = $1/1600 + 1/R_T$ $R_T = 2400 \Omega / 2.4 k\Omega$ temperature = $11 \degree C$	C1 A1	[2]
	(0	c) e (a	e.g. only small part of scale used / small sensitivity non-linear any two sensible suggestions, 1 each, max 2)	B1 B1	[2]
2	(a	op (s	perates on / takes signal from sensing device so that) it gives an voltage output	B1 B1	[2]
	(b) th Va Va	nermistor and resistor in series between +4 V line and earth Y _{ouT} shown clearly across <i>either</i> thermistor <i>or</i> r es istor Y _{ouT} shown clearly across thermistor	M1 A1	[3]
	(c	;) e. (a	.g. remote switching switching large current by means of a small current isolating circuit from high voltage switching high voltage by means of a small voltage/current any two sensible suggestions, 1 each to max. 2)	В	[2]
3	(a	tem no (perature of the spheres is the same (net) transfer of energy between the spheres	B1 B1	[2]
	(b)		power = $m \times c \times \Delta \theta$ where <i>m</i> is mass per second $3800 = m \times 4.2 \times (42 - 18)$ $m = 38 \text{ g s}^{-1}$	C1 C1 A1	[3]
		(ii)	some thermal energy is lost <u>to the surroundings</u> so rate is an overestimate	M1 A1	[2]

4	(a)	tei tei	mpe mpe	rature	scale	calibrated	assuming	linear	change	of	property	with		
		ne	eithe	r prope	rty varie	es linearly w	ith temperat	ure					B1	[2]
	(b)	(i)	do	oes not	depend	I on the prop	perty of a su	bstance					B1	[1]
		(ii)	(ii) temperature at which atoms have minimum/zero energy										B1	[1]
	(c)	(i)	32	23.15 K									A1	[1]
		(ii)	30).00 K									A1	[1]
	5	(a)	(i)	27.2 + 300.4	273.15 K	or 27.2 + 27	3.2						C1 A1	[2]
			(ii)	11.6 K	2								A1	[1]
		(b)	(i)	(<c<sup>2></c<sup>	s the) n	nean / averag	ge square sp	eed					B1	[1]
			(ii)	$\rho = \Lambda$ so, pV and pV so me	Im/V wit / = 1/3 / = Nk an kinet	h <u>N explaine</u> Nm <c<sup>2> T with <u>k exp</u> ic energy / <</c<sup>	<u>d</u> lained E _K > = ½m <c< th=""><th>c²> = 3/</th><th><u>2 kT</u></th><th></th><th></th><th></th><th>B1 B1 B1 B1</th><th>[4]</th></c<>	c ² > = 3/	<u>2 kT</u>				B1 B1 B1 B1	[4]
		(c)	(i)	pV = n 2.1×1 n = 6	0RT 10 ⁷ × 7.8 8 mol	$3 \times 10^{-3} = n$	× 8.3 × 290						C1 A1	[2]
			(ii)	mean	kinetic e	energy = 3/ = 3/ = 6.	2 <i>kT</i> 2 × 1.38 × 10 0 × 10 ^{−21} J) ⁻²³ × 290	ON				C1 A1	[2]
			(iii)	realisa energy = 2.46	tion that $\gamma = 6.0$ 5×10^5	t total interna × 10 ⁻²¹ × 68 J	al energy is the kinetic state of the second	he total F	kinetic ene	ergy			C1 C1 A1	[3]

asherrana@chemistryonlinetuition.com

6	(a	(i)	1 deg C corresponds to (3840 – 190) / 100 Ω for resistance 2300 Ω , temperature is 100 × (2300 – 3840) / (190 – 3840)				
			temperature is 42 °C	А	[2]		
		(ii)	either 286 K = $13 \degree C$ or $42 \degree C = 315$ K thermodynamic scale does not depend on the property of a substance so change in resistance (of thermistor) with temperature is non-linear	B1 M1 A1	[3]		
	(b)	hea hea 396 θ =	it gained by ice in melting = $0.012 \times 3.3 \times 10^5$ J = 3960 J it lost by water = $0.095 \times 4.2 \times 10^3 \times (28 - \theta)$ i0 + $(0.012 \times 4.2 \times 10^3 \times \theta)$ = $0.095 \times 4.2 \times 10^3 \times (28 - \theta)$ = 16° C	C1 C C A1	[4]		
		(ans (use	swer $18^{\circ}C$ – melted ice omitted – allow max 2 marks) e of $(\theta - T)$ then allow max 1 mark)				

