Thermal Properties of Materials

Question paper 2

Level	International A Level			
Subject	Physics			
Exam Board	CIE			
Topic	Thermal Properties of Materials			
Sub Topic				
Paper Type	Theory			
Booklet	Question paper 2			

Time Allowed: 59 minutes

Score: /49

Percentage: /100

A*	А	В	С	D	E	U
>85%	'77.5%	70%	62.5%	57.5%	45%	<45%

- **1** The volume of 1.00 kg of water in the liquid state at 100 °C is 1.00×10^{-3} m³. The volume of 1.00 kg of water vapour at 100 °C and atmospheric pressure 1.01×10^{5} Pa is 1.69 m³.
 - (a) Show that the work done against the atmosphere when $1.00\,\mathrm{kg}$ of liquid water becomes water vapour is $1.71\times10^5\,\mathrm{J}$.

[2]

(b) (i) The first law of thermodynamics may be given by the expression

$$\Delta U = + q + w$$

where ΔU is the increase in internal energy of the system.

State what is meant by

1. + q,

[1]

2. + W.

______[1]

(ii) The specific latent heat of vaporisation of water at $100\,^{\circ}\text{C}$ is $2.26\times10^{6}\,\text{J\,kg}^{-1}$.

A mass of 1.00 kg of liquid water becomes water vapour at 100 °C.

Determine, using your answer in (a), the increase in internal energy of this mass of water during vaporisation.

	a large amplitude at the frequency of the microwaves. State the name given to this phenomenon.
	[1]
(b)	The effective microwave power of the cooker is 750 W. The temperature of a mass of 280 g of water rises from 25 °C to 98 °C in a time of 2.0 minutes
	Calculate a value for the specific heat capacity of the water.
	specific heat capacity = Jkg ⁻¹ K ⁻¹ [3]
(c)	The value of the specific heat capacity determined from the data in (b) is greater than the accepted value. A student gives as the reason for this difference: 'heat lost to the surroundings'. Suggest, in more detail than that given by the student, a possible reason for the difference.

3	(a)	(i)	State what is meant by the <i>internal energy</i> of a system.
			[2]
		(ii)	Explain why, for an ideal gas, the internal energy is equal to the total kinetic energy of the molecules of the gas.
			[2]
	(b)	The	mean kinetic energy $< E_{\rm K}>$ of a molecule of an ideal gas is given by the expression $< E_{\rm K}> = \frac{3}{2}kT$
		whe	Fre k is the Boltzmann constant and T is the thermodynamic temperature of the gas.
			ylinder contains $1.0\mathrm{mol}$ of an ideal gas. The gas is heated so that its temperature nges from $280\mathrm{K}$ to $460\mathrm{K}$.
		(i)	Calculate the change in total kinetic energy of the gas molecules.
			change in energy = J [2]

	tota	energy =		J	[3]
	tota	energy =		J	[3
	tota	energy =		J	[3
	tota	energy =	 	J	[3]

		nt suggests that, when an ideal gas is heated from 100°C to 200°C, the internated the gas is doubled.
(a)	(i)	State what is meant by internal energy.
		[2
	(ii)	By reference to one of the assumptions of the kinetic theory of gases and you answer in (i), deduce what is meant by the internal energy of an ideal gas.
		[3
(b)	Sta	te and explain whether the student's suggestion is correct.
		[2

4

5	(a)	Define specific latent heat.
		[2]
	(b)	The heater in an electric kettle has a power of 2.40 kW. When the water in the kettle is boiling at a steady rate, the mass of water evaporated in 2.0 minutes is 106 g. The specific latent heat of vaporisation of water is 2260 J g ⁻¹ .
		Calculate the rate of loss of thermal energy to the surroundings of the kettle during the boiling process.
		rate of loss = W [3]

6	(a)	Stat	te what is meant by the <i>internal energy</i> of a system.	
			[2]
	(b)		te and explain qualitatively the change, if any, in the internal energy of the following	ıg
		(i)	a lump of ice at 0 °C melts to form liquid water at 0 °C,	
			[_
		(ii)	a cylinder containing gas at constant volume is in sunlight so that its temperaturises from 25 °C to 35 °C.	ҽ
				3]

7	(a)	The first law of thermodynamics may be expressed in the form
		$\Delta U = q + w.$
	Ехр	lain the symbols in this expression.
	+ Δ	U
	+ q	
	+ W	
(b)	(i)	State what is meant by <i>specific latent heat</i> .
` ,	()	
		[3]
	(ii)	Use the first law of thermodynamics to explain why the specific latent heat of vaporisation is greater than the specific latent heat of fusion for a particular substance.
		[3]