Thermal Properties of Materials
 Mark Scheme 1

Level	International A Level
Subject	Physics
Exam Board	CIE
Topic	Thermal Properties of Materials
Sub Topic	
Paper Type	Theory
Booklet	Mark Scheme 1

1 melting: solid to liquid B
at a specific/one temperature/at the melting point B1
evaporation: liquid to vapour/gas OR molecules escape from surface of liquid B1 at all temperatures
2 evaporation: molecules escape from the surface B1
at all temperatures B1
boiling: takes place throughout/in the liquid B1
at the boiling point/at specific temperatures B1
3 (a (i) e.g. (phase) change from liquid to gas / vapour thermal energy required to maintain constant temperature B1 (do not allow 'convert water to steam')
(ii) e.g. evaporation takes place at surface B1
boiling takes place in body of the liquid B1
e.g. evaporation occurs at all temperatures B1
boiling occurs at one temperature B1
\qquad
(b) (i) volume $=\left(\frac{48}{4.5}=\right) 10.7 \mathrm{~cm}^{3}$
(ii) volume $=10.7 /\left(6.0 \times 10^{23}\right)$
$=1.8 \times 10^{-23} \mathrm{~cm}^{3}$
2 separation $=\sqrt[3]{ }\left(1.8 \times 10^{-23}\right)$ $=2.6 \times 10^{-8} \mathrm{~cm}$ A1

4 (a) sum of (random) kinetic and potential energies M1 of the atoms/molecules of the substance A1
(b) (i) potential energy unchanged as atoms remain in same posijions M1 allow 'reduced because atoms slightly closer together' vibrational kinetic energy reduced because temperature lower M1 so internal energy less A1
(ii) potential energy increase because separation increases M1 kinetic energy unchanged because temperature unchanged M1 so internal energy increases A1
[2)
2)

[3)

[3)

5 (a) (sum of) potential energy and kinetic energy of molecules/atoms/particles
(b) ($p V=n R T$
either at $\mathrm{A}, 1.2 \times 10^{5} \times 4.0 \times 10^{-3}=n \times 8.31 \times 290$
or at $\mathrm{B}, \quad 3.6 \times 10^{5} \times 4.0 \times 10^{-3}=n \times 8.31 \times 870$ C1 $n=0.20 \mathrm{~mol}$
(ii) $1.2 \times 10^{5} \times 7.75 \times 10^{-3}=0.20 \times 8.31 \times T$ or $T=(7.75 / 4.0) \times 290$ $T=560 \mathrm{~K}$
(Allow tolerance from graph: $7.7-7.8 \times 10^{-3} \mathrm{~m}^{3}$)
(c) temperature changes/decreases so internal energy changes/decreases B1 volume changes (at constant pressure) so work is done

6 (a) (numerically equal to) quantity of (thermal) energy/heat to change state/phase of unit mass
at constant temperature
(allow $1 / 2$ for definition restricted to fusion or vaporisation)
(b) (i) at 70 W , mass s${ }^{-1}=0.26 \mathrm{~g} \mathrm{~s}^{-1}$
at 110 W , mass s${ }^{-1}=0.38 \mathrm{~g} \mathrm{~s}^{-1}$
A1
A1
(ii) 1. $P+h=m L$ or substitution of one set of values C 1
$(110-70)=(0.38-0.26) L$
C1
$L=330 \mathrm{Jg}^{-1}$
A1
either $70+h=0.26 \times 330$
or $110+h=0.38 \times 330$
$h=17 / 16 / 15 \mathrm{~W}$
C1
A
(a) (numerically equal to) quantity of heat/(thermal) energy to change state/phase of unit mass

M1
at constant temperature
A1
(allow 1/2 for definition restricted to fusion or vaporisation)
(b) (i) constant gradient/straight line (allow linear/constant slope)

B1
(ii) \quad Pt $=m L$ or power $=$ gradient $\times L$
use of gradient of graph
(or two points separated by at least 3.5 minutes)
$110 \times 60=L \times(372-325) \times 10^{-3} / 7.0$
$L=9.80 \times 10^{5} \mathrm{Jkg}^{-1}$ (accept 2 s.f.) (allow 9.8 to 9.9 rounded to 2 s.f.)
(iii) some energy/heat is lost to the surroundings or vapour condenses on sides so value is an overestimate

M1 A1

