Thermal Properties of Materials

Mark Scheme 2

Level	International A Level
Subject	Physics
Exam Board	CIE
Торіс	Thermal Properties of Materials
Sub Topic	
Paper Type	Theory
Booklet	Mark Scheme 2

Time Allowe	d:	59 minutes	59 minutes						
Score:		/49	/49						
Percentage:		/100							
A*	А	В	С	D	E	U			
>85%	'77.5%	70%	62.5%	57.5%	45%	<45%			

1	(a)	either change in volume = $(1.69 - 1.00 \times 10^{-3})$ or liquid volume << volume of vapour work done = $1.01 \times 10^5 \times 1.69 = 1.71 \times 10^5$ (J)	M1 A1	1 I [2]	
	(b)	(i) 1. heating of system/thermal energy supplied to the sys	tem B1	[1]	
		2. work done on the system	B1	[1]	
		(ii) $\Delta U = (2.26 \times 10^6) - (1.71 \times 10^5)$ = 2.09 × 10 ⁶ J (3 s.f. needed)	C1 A1	1 [2]	
2	(a	resonance	Β1	I [1]	
	(b)	$Pt = mc \Delta \theta$ $750 \times 2 \times 60 = 0.28 \times c \times (98 - 25)$ $c = 4400 \text{ J kg}^{-1} \text{ K}^{-1}$ (use of $\Delta \theta = 73 + 273 \text{ max. } 1/3$) (use of $t = 2s \text{ not } 120 \text{ s max. } 2/3$) (c) e.g. some microwave leakage from the cooker e.e.g. container for the water is also heat (any sensible suggestion)	C1 C1 A1	I [3] B [1]	

CHEMISTRY ONLINE — TUITION —

3	(a	(i)	sum of kinetic and potential energies of the molecules reference to random distribution	M1 A1	[2]
		(ii)	for ideal gas, no intermolecular forces so no potential energy (only kinetic)	M1 A1	[2]
	(b)	(i)	either change in kinetic energy = $3/2 \times 1.38 \times 10^{-23} \times 1.0 \times 6.02 \times 10^{23} \times 180$ = 2240 J	C1 A	[2]
			or $R = kN_A$ energy $= 3/2 \times 1.0 \times 8.31 \times 180$ = 2240 J	(C1) (A1)	
		(ii)	increase in internal energy = heat supplied + work done on system 2240 = energy supplied – 1500 energy supplied = 3740 J	B1 C1 A	[3]
4	(a	(i)	sum of potential energy and kinetic energy of atoms/molecules/particles reference to random	A1	[2]
		(ii)	no intermolecular forces no potential energy internal energy is kinetic energy (of random motion) of molecules (<i>reference to random motion here then allow back credit to (i) if M1 scored</i>)	B1 B1 B1	[3]
	(b)	kine <i>eith</i>	etic energy ∞ thermodynamic temperature per temperature in Celsius, not kelvin so incorrect	B1	
		or t	emperature in kelvin is not doubled	B1	[2]

asherrana@chemistryonlinetuition.com

5	(a)	(numerically equal to) quantity of (thermal) energy required to change the state of unit mass of a substance without any change of temperature (Allow 1 mark for definition of specific latent heat of fusion/vaporisation)			[2]
	(b)	eithe or	r energy supplied = $2400 \times 2 \times 60 = 288000 \text{ J}$ energy required for evaporation = $106 \times 2260 = 240000 \text{ J}$ difference = 48000 J rate of loss = $48000 \text{ / } 120 = 400 \text{ W}$ energy required for evaporation = $106 \times 2260 = 240000 \text{ J}$ power required for evaporation = $240000 \text{ / } (2 \times 60) = 2000 \text{ W}$	C1 C1 A1 (C1) (C1)	[0]
				(AT)	[3]
6	(a)	sum refe	n of potential energy and kinetic energy of atoms/molecules/particles rence to random (distribution)	M1 A1	[2]
	(b)	(i)	as lattice structure is 'broken'/bonds broken/forces between molecules reduced (not molecules separate) no change in kinetic energy, potential energy increases internal energy increases	B1 M1 A1	[3]
		(ii)	<i>either</i> molecules/atoms/particles move faster/ $< c^2 >$ is increasing <i>or</i> kinetic energy increases with temperature (increases) no change in potential energy, kinetic energy increases internal energy increases	B1 M1 A1	[3]

7 (a	+ ΔU : increase in internal energy + <i>q</i> : thermal energy / heat supplied to the system + <i>w</i> : work done on the system			[3]	
	(b)	((thermal) energy required to change the state of a substance per unit mass without any change of temperature	M1 A1 A1	[3]
		(ii)	when evaporating greater change in separation of atoms/molecules greater change in volume identifies each difference correctly with ΔU and w	M1 M1 A1	[3]

ases