Thermal Properties of Materials

Mark Scheme 3

Level	International A Level
Subject	Physics
Exam Board	CIE
Торіс	Thermal Properties of Materials
Sub Topic	
Paper Type	Theory
Booklet	Mark Scheme 3

Time Allowed: Score:		57 minutes	57 minutes /47					
		/47						
Percentage: /100								
A*	А	В	С	D	E	U		
>85%	'77.5%	70%	62.5%	57.5%	45%	<45%		

1 (a) su ra	ım of ndon	kinetic and potential energies of molecules / particles / atomsM1 n (distribution)A1	 [2]]
(b) +∠ +c +v	∆ <i>U</i> :ir γ <i>:</i> h v: v	ncrease in internal energyB1 neating of / heat supplied to systemB1 vork done on systemB1	 [3]]
(c) (i)	wc w	ork done = $p\Delta V$	 [3]]
	(ii)	the	ese three marks were removed, as insufficient data was given in the question.		
			[To	otal: 8]]
2	(a)	incr <i>(alle</i> doir	reasing separation of molecules / breaking bo <mark>n</mark> ds between molecules ow atoms/molecules, overcome forces) ng <u>work</u> against atmosphere (during expansion)	B1 B1	[2]
	(b)	(i)	 <i>either</i> bubbles produced at a <u>constant rate</u> / mass evaporates/lost at <u>constant rate</u> <i>or</i> find mass loss more than once and this rate should be constant or temperature of liquid remains constant to allow/cancel out/eliminate/compensate for heat losses (to atmosphere) (<i>do not allow 'prevent'/'stop'</i>) 	B1 B1	[1] [1]
		(ii)	use of power × time = mass × specific latent heat $(70 - 50) \times 5 \times 60 = (13.6 - 6.5) \times L$ $L = 845 \text{ J g}^{-1}$	C1 C1 A1	[3]

(a)	(Thermal) energy/ heat required to convert unit mass of solid to at its normal melting point /without any change in temperature (reference to 1 kg or to ice -+ water scores max 1 mark)	o liquid	M1 A1	[2]
(b)) (i) To make allowance for heat gains from the atmosphere		81	[1]
	 (ii) e.g. constant rate of production of droplets from funnel constant mass of water collected per minute in beaker (any sensible suggestion, 1 mark) 		81	[1]
	(iii) mass melted by heater in 5 minutes= $64.7 - \frac{1}{2} \times 16.6 = 5$ $56.4 \times 10^{-3} \times L = 18$ L = 320 kJ kg ⁻¹ (Use of m = 64.7, giving L = 278 kJ kfT ¹ . scores max 1 may use of m = 48.1, giving L = 374 kJ kg ⁻¹ , scores max 2 mar	6.4g ark ks)	C1 C1 A1	[3]

4 (a $\Delta U = q + w$ (allow correct word equation)

B1 [1]

(b) eitherkinetic energy constant because temperature constantM1potential energy constant because no intermolecular forcesM1so no change in internal energyA1orkinetic energy and potential energy both constantso no change in internal energy(M1)so no change in internal energy(M1)

reason for *either* constant k.e. *or* constant p.e. given (A1)

3

5	(a	(on melting,) bonds between molecules are broken/weakened or molecules further apart/are able to slide over one another kinetic energy unchanged so no temperature change potential energy increased/changed so energy required				
	(b)) the with	rmal energy/heat required to convert unit mass of solid to liquid n no change in temperature/ at its normal boiling point	M1 A1	[2]	
	(c)) (i) (ii)	thermal energy lost by water = $0.16 \times 4.2 \times 100$ = 67.2 kJ 67.2 = $0.205 \times L$ L = 328 kJ kg ⁻¹ more energy (than calculated) melts ice so, (calculated) <i>L</i> is lower than the accepted value	C1 C1 A1 M1 A1	[3] [2]	
6	(a)	(i)	idea of heat lost (by oil) = heat gained (by thermometer) 32 x 1.4 x $(54 - t) = 12 \times 0.18 \times (t - 19)$ t = 52.4°C		C1 C1 A1	[3
		(ii)	<i>either</i> ratio (= 1.6/54) = 0.030 <i>or</i> (=1.6/327) = 0.0049		A1	[1]
	(b)	thern beca	nistor thermometer (allow 'resistance thermometer') use small mass/thermal capacity		B1 B1	[2]
(0	(c)	 boiling point temperature is constant further comment e.g. heating of bulb would affect only rate of boili 			M1	
					A1	[2]

