## Thermal Properties of Materials <br> Mark Scheme 3

| Level | International A Level |
| :--- | :--- |
| Subject | Physics |
| Exam Board | CIE |
| Topic | Thermal Properties of Materials |
| Sub Topic |  |
| Paper Type | Theory |
| Booklet | Mark Scheme 3 |


(a) sum of kinetic and potential energies of molecules / particles / atoms ..... M1
random (distribution) ..... A1
(b) $+\Delta U$ : increase in internal energy ..... B1
$+q$ : heating of / heat supplied to system ..... B1
$+w$ : work done on system ..... B1

$$
=30 \mathrm{~J}
$$

(c) (i) work done $=p \Delta V$

(c) (i) work done $=p \Delta V$

(c) (i) work done $=p \Delta V$ .....  ..... C1 .....  ..... C1 .....  ..... C1
$=1.0 \times 10^{5} \times(2.1-1.8) \times 10^{-3}$
$=1.0 \times 10^{5} \times(2.1-1.8) \times 10^{-3}$
$=1.0 \times 10^{5} \times(2.1-1.8) \times 10^{-3}$ ..... M1 ..... M1 ..... M1
c) (i) $\begin{aligned} \text { work done } & =p \Delta V \quad \ldots \ldots \ldots \ldots . . . . . . . \\ & =1.0 \times 10^{5} \times(2.1 \\ & =30 \mathrm{~J} \ldots \ldots \ldots \ldots \\ w=30 \mathrm{~J}, q & =0 \text { so } \Delta U=30 \mathrm{~J}\end{aligned}$
c) (i) $\begin{aligned} \text { work done } & =p \Delta V \quad \ldots \ldots \ldots \ldots . . . . . . . \\ & =1.0 \times 10^{5} \times(2.1 \\ & =30 \mathrm{~J} \ldots \ldots \ldots \ldots \\ w=30 \mathrm{~J}, q & =0 \text { so } \Delta U=30 \mathrm{~J}\end{aligned}$
c) (i) $\begin{aligned} \text { work done } & =p \Delta V \quad \ldots \ldots \ldots \ldots . . . . . . . \\ & =1.0 \times 10^{5} \times(2.1 \\ & =30 \mathrm{~J} \ldots \ldots \ldots \ldots \\ w=30 \mathrm{~J}, q & =0 \text { so } \Delta U=30 \mathrm{~J}\end{aligned}$ ..... A1 ..... A1 ..... A1
W. Work done on system
W. Work done on system
W. Work done on system[3]
(ii) these three marks were removed, as insufficient data was given in the question.
[Total: 8]

2 (a) increasing separation of molecules / breaking bonds between molecules B1 (allow atoms/molecules, overcome forces) doing work against atmosphere (during expansion) B1
(b) (i) 1 either bubbles produced at a constant rate / mass evaporates/lost at constant rate
or find mass loss more than once and this rate should be constant or temperature of liquid remains constant B1
2 to allow/cancel out/eliminate/compensate for heat losses (to atmosphere) B1 (do not allow 'prevent'/'stop')
(ii) use of power $\times$ time $=$ mass $\times$ specific latent heat C1 $(70-50) \times 5 \times 60=(13.6-6.5) \times L$ C1 $L=845 \mathrm{~J} \mathrm{~g}^{-1}$
3 (a) (Thermal) energy/ heat required to convert unit mass of solid to liquid ..... M1 at its normal melting point /without any change in temperature (reference to 1 kg or to ice -+ water scores max 1 mark)(b) (i) To make allowance for heat gains from the atmosphere81(ii) e.g. constant rate of production of droplets from funnelconstant mass of water collected per minute in beaker(any sensible suggestion, 1 mark)81[1]
(iii) mass melted by heater in 5 minutes $=64.7-1 / 2 \times 16.6=56.4 \mathrm{~g}$ ..... C1
$56.4 \times 10^{-3} \times L=18$ ..... C1
$L=320 \mathrm{~kJ} \mathrm{~kg}-{ }^{-1}$ ..... A1( Use of $m=64.7$, giving $L=278 \mathrm{~kJ} \mathrm{kfT}{ }^{1}$. scores max 1 mark
4 (a $\quad \Delta U=q+w \quad$ (allow correct word equation) ..... B1
(b) either kinetic energy constant because temperature constant ..... M1
potential energy constant because no intermolecular forces ..... M1
so no change in internal energy ..... A1
[1]
use ofm $=48.1$, giving $L=374 \mathrm{~kJ} \mathrm{~kg}^{-1}$, scores max 2 marks)[3]
kinetic energy and potential energy both constant ..... (M1)so no change in internal energy(A1)
reason for either constant k.e. or constant p.e. given ..... (A1)

(a (on melting,) bonds between molecules are broken/weakened
or molecules further apart/are able to slide over one another

B1 kinetic energy unchanged so no temperature change B1 potential energy increased/changed so energy required B1
(b) thermal energy/heat required to convert unit mass of solid to liquid M1 with no change in temperature/ at its normal boiling point

A1
(c) (i) thermal energy lost by water $=0.16 \times 4.2 \times 100$

$$
=67.2 \mathrm{~kJ}
$$

$67.2=0.205 \times L \quad$ C1
$L=328 \mathrm{~kJ} \mathrm{~kg}^{-1} \quad \mathrm{~A} 1$
(ii) more energy (than calculated) melts ice $\quad$ M1 so, (calculated) $L$ is lower than the accepted value A1

