Thermal Properties of Materials

Mark Scheme 5

Level	International A Level
Subject	Physics
Exam Board	CIE
Торіс	Thermal Properties of Materials
Sub Topic	
Paper Type	Theory
Booklet	Mark Scheme 5

Time Allowe	d:	90 minute	90 minutes						
Score:		/75	/75						
Percentage:		/100							
A*	A	В	С	D	E	U			
>85%	'77.5%	70%	62.5%	57.5%	45%	<45%			

1	(a	ma	ass / volume (ratio idea essential)	B1		[1]
	(b)	(i)	mass = $Ah\rho$	B1		[1]
		(ii)	pressure = force/area weight (of liquid)/force (on base) = $Ah\rho g$ pressure = $h\rho g$	B1 B1 A0		[2]
	(c)	(i)	ratio = 1600 or 1600:1	A1		[1]
		(ii)	ratio = $\sqrt[3]{1600}$ = 11.7 (allow 12)	C1 A1		[2]
	(d)	(i)	density of solids and liquids are (about) equal	B	1	[1]
	(i	i)	strong forces: fixed volume rigid forces: retains shape / does not flow / little deformation (allow 1 mark for fixed volume, fixed shape)	B´ B´	1 1	[2]
2 (a	(i)	eit ω	her $\omega = 2\pi/T$ or $\omega = 2\pi f$ and $f = 1/T$ = $2\pi/0.30$	C1		
			= 20.9 rad s^{-1} (accept 2 s.f.)	A1	[2]	
	(ii)	kin	tetic energy = $\frac{1}{2}m\omega^2 x_0^2$ or $v = \omega x_0$ and $\frac{1}{2}mv^2$ = $\frac{1}{2} \times 0.130 \times 20.9^2 \times (1.5 \times 10^{-2})^2 = 6.4 \times 10^{-3} \text{ J}$	C1 A1	[2]	
(b) (i)	as (in	magnet moves, flux is cut by <u>cup/aluminium</u> giving rise to induced e.m.f. cup)	B1		
		inc the	luced e.m.f. gives rise to currents and heating of the cup ermal energy derived from oscillations of magnet so amplitude decreases	B1 B1		
		inc the	luced e.m.f. gives rise to currents which generate a magnetic field e magnetic field opposes the motion of the magnet so amplitude decreases	(B1) (B1)	[3]	
	(ii)	<i>eit.</i> to	her use of $\frac{1}{2}m\omega^2 x_0^2$ and $x_0 = 0.75 \text{ cm}$ or x_0 is halved so $\frac{1}{4}$ energy give new energy = 1.6 mJ	C1		
		eit	her loss in energy = $6.4 - 1.6$ or loss = $\frac{3}{4} \times 6.4$ giving loss = 4.8 mJ	A1	[2]	
(c) q = 4.8 ∆θ	<i>mc</i> × 1 = 8.	$\Delta \theta$ $0^{-3} = 6.2 \times 10^{-3} \times 910 \times \Delta \theta$ $5 \times 10^{-4} \text{ K}$	C1 A1	[2]	

asherrana@chemistryonlinetuition.com

3	(a)	initially, $pV/T = (2.40 \times 10^5 \times 5.00 \times 10^{-4})/288 = 0.417$ finally, $pV/T = (2.40 \times 10^5 \times 14.5 \times 10^{-4})/835 = 0.417$ ideal gas because pV/T is constant (allow 2 marks for two determinations of V/T and then 1 mark for V/T and p constant, so ideal)						
	(b)	(i)	work done = $p\Delta V$ = 2.40 × 10 ⁵ × (14.5 - 5.00) × 10 ⁻⁴ = 228 J (<i>ignore sign, not 2 s.f.</i>)	C1 A1	[2]			
		(ii)	$\Delta U = q + w = 569 - 228$ = 341 J increase	M1 A1	[2]			
4	(a	(i)	<i>N</i> : (total) number of <u>molecules</u>	B1	[1]			
		(ii)	< <i>c</i> ² >: mean square speed/velocity	B1	[1]			
	(b)	pV (me alge	= $\frac{1}{3}Nm < c^2 > = NkT$ ean) kinetic energy = $\frac{1}{2}m < c^2 >$ ebra clear leading to $\frac{1}{2}m < c^2 > = (3/2)kT$	C1 A1	[2]			
	(c)	(either energy required = $(3/2) \times 1.38 \times 10^{-23} \times 1.0 \times 6.02 \times 10^{23}$ = 12.5 J (12J if 2 s.f.) or energy = $(3/2) \times 8.31 \times 1.0$ = 12.5 J	C1 A (C1) (A1)	[2]			
		(ii)	energy is needed to push back atmosphere/do work against atmosphere	< · /	·			
			so total energy required is greater	A1	[2]			

asherrana@chemistryonlinetuition.com

5	(a)	e.g.	moving in random no intermolecular volume of <u>mole</u> container time of collision n	n (rapid) motion c forces of attracti cules/atoms/part	f <u>molecules/aton</u> on/repulsion <u>icles</u> negligible	<u>ns/particles</u> <u>compared</u> to volume of		
		(1 e	each, max 2)				B2	[2]
	(b)	(i)	1. number of (g	as) <u>molecules</u>			B1	[1]
			2. mean square	speed/velocity (of gas molecules	3)	B1	[1]
		(ii)	either $pV = NkT$ and $\langle E_{\rm K} \rangle = \frac{1}{2}m^2$	or pV = nRT an	d links <i>n</i> and <i>k</i>		М	
			clear algebra lead	ding to $\langle E_{\rm K} \rangle = \frac{3}{2}$	kТ		A1	[2]
	(c)	(i)	sum of potential e reference to rand	energy and kinetion om (distribution)	c energy of <u>mole</u>	cules/atoms/particles	M1 A1	[2]
		(ii)	no intermolecular	forces so no pot	ential energy (change_in)_ki	netic energy and this is	B1	
			proportional to (cl	hange in) T		inclic chergy and this is	B1	[2]
6	(a	(i)	no forces (of attra	action or repulsio	n) between atom	ns / molecules / particles	B1	[1]
		(ii)	sum of kinetic an due to random m	d potential energ otion	y of atoms / mole	ecules	M1 A1	[2]
		(iii)	(random) kinetic	energy increases	with temperatur	e	M1	
			no potential ener (so increase in te	gy emperature increa	ases internal ene	ergy)	A1	[2]
	(b)	(i)	zero				A1	[1]
		(ii)	work done = $p\Delta$	MIST			C1	
	$= 4.0 \times 10^5 \times 6 \times 10^{-4}$ = 240.1 (ignore any sign)						A1	[2]
		(iii)						
)	change	work done / J	heating / J	increase in internal energy / J		
			$P \rightarrow Q$ $Q \rightarrow R$ $R \rightarrow P$	+240 0 -840	600 +720 +480	-360 +720 -360		

(correct signs essential) (each horizontal line correct, 1 mark – max 3)

В3 [3]

7	(a	(a (i) 1 deg C corresponds to (3840 – 190) / 100 Ω for resistance 2300 Ω, temperature is 100 × (2300 – 3840) / (190 – 3840)			
			temperature is 42°C	A1	[2]
		(ii)	either 286 K = $13 \circ C$ or $42 \circ C = 315$ K thermodynamic scale does not depend on the property of a substance so change in resistance (of thermistor) with temperature is non-linear	B1 M1 A1	[3]
	(b)	heat	t gained by ice in melting = $0.012 \times 3.3 \times 10^5$ J	C1	
		heat 3960 $\theta =$ (ans (use	t lost by water = $0.095 \times 4.2 \times 10^3 \times (28 - \theta)$ $0 + (0.012 \times 4.2 \times 10^3 \times \theta) = 0.095 \times 4.2 \times 10^3 \times (28 - \theta)$ $16^{\circ}C$ swer $18^{\circ}C$ - melted ice omitted - allow max 2 marks) $e ext{ of } (\theta - T)$ then allow max 1 mark)	C1 C1 A1	[4]
8	(a	e.ç e.ç e.ç an	g. two objects of different masses at same temperature (M1) same material would have different amount of heat (A1) g. temperature shows direction of heat transfer (M1) from high to low regardless of objects (A1) g. when substance melts/boils (M1) heat input but no temperature change (A1) by two, M1 + A1 each, max 4		[4]
	(b) (i)	energy losses (to the surroundings) either increase as the temperature rises	M1	101
			or rise is zero when heat loss = heat input	A1	[2]
		(ii)	idea of input <u>power</u> = maximum <u>rate</u> of heat loss power = $m \times c \times \Delta \theta / \Delta t$	C1	
			$54 = 0.96 \times c \times 3.7 / 60$ $c = 910 \text{ J kg}^{-1} \text{ K}^{-1}$	C1 A1	[3]
				[Tota	al: 9]