Thermal Properties of Materials
 Mark Scheme 5

Level	International A Level
Subject	Physics
Exam Board	CIE
Topic	Thermal Properties of Materials
Sub Topic	
Paper Type	Theory
Booklet	Mark Scheme 5

(a mass / volume (ratio idea essential)
(b) (i) mass $=A h \rho$
B1
 $\begin{array}{ll}\text { weight (of liquid)/force (on base) }=A h \rho g & \text { B1 } \\ \text { pressure }=h \rho g & \text { A0 }\end{array}$ pressure $=h \rho g$ A0
(c) (i) ratio $=1600$ or $1600: 1 \quad \mathrm{~A} 1$
(ii) $\begin{array}{ll}\text { ratio } & =\sqrt[3]{ } 1600 \\ & =11.7\end{array}$ C1

$$
=11.7 \text { (allow 12) }
$$

A1
(d) (i) density of solids and liquids are (about) equal

B1
(ii) strong forces: fixed volume B1 rigid forces: retains shape / does not flow / little deformation B1 (allow 1 mark for fixed volume, fixed shape)

2 (a (i) either $\omega=2 \pi / T$ or $\omega=2 \pi f$ and $f=1 / T$
$\omega=2 \pi / 0.30$

$$
\left.=20.9 \mathrm{rad} \mathrm{~s}^{-1} \text { (accept } 2 \text { s.f. }\right)
$$

(ii) kinetic energy $=1 / 2 m \omega^{2} x_{0}^{2}$ or $v=\omega x_{0}$ and $1 / 2 m v^{2}$

$$
=1 / 2 \times 0.130 \times 20.9^{2} \times\left(1.5 \times 10^{-2}\right)^{2}=6.4 \times 10^{-3} \mathrm{~J}
$$

(b) (i) as magnet moves, flux is cut by cup/aluminium giving rise to induced e.m.f. (in cup)
induced e.m.f. gives rise to currents and heating of the cup B1 thermal energy derived from oscillations of magnet so amplitude decreases B1 or
induced e.m.f. gives rise to currents which generate a magnetic field the magnetic field opposes the motion of the magnet so amplitude decreases (B1)
(ii) either use of $1 / 2 m \omega^{2} x_{0}{ }^{2}$ and $x_{0}=0.75 \mathrm{~cm}$ or x_{0} is halved so $1 / 4$ energy to give new energy $=1.6 \mathrm{~mJ}$
either loss in energy $=6.4-1.6$ or loss $=3 / 4 \times 6.4$ giving loss $=4.8 \mathrm{~mJ}$
(c) $q=m c \Delta \theta$
$4.8 \times 10^{-3}=6.2 \times 10^{-3} \times 910 \times \Delta \theta$
$\Delta \theta=8.5 \times 10^{-4} \mathrm{~K}$

3
(a) initially, $p V / T=\left(2.40 \times 10^{5} \times 5.00 \times 10^{-4}\right) / 288=0.417 \quad \mathrm{M}$ finally, $p V / T=\left(2.40 \times 10^{5} \times 14.5 \times 10^{-4}\right) / 835=0.417$ ideal gas because $p V / T$ is constant A1 (allow 2 marks for two determinations of V/T and then 1 mark for V / T and p constant, so ideal)
(b) (i) work done $=p \Delta V$

$$
\begin{aligned}
& =2.40 \times 10^{5} \times(14.5-5.00) \times 10^{-4} \\
& =228 \mathrm{~J} \text { (ignore sign, not } 2 \text { s.f.) }
\end{aligned}
$$

$$
\text { , }=569-228
$$

(ii) $\quad \Delta U=q+w=569-228$ $=341 \mathrm{~J}$
increase A1

4
(a (i) N : (total) number of molecules B1
(ii) $\left\langle c^{2}\right\rangle$: mean square speed/velocity

B1
(b) $p V=1 / 3 N m<c^{2}>=N k T$
(mean) kinetic energy $\left.=1 / 2 m<c^{2}\right\rangle$
algebra clear leading to $1 / 2 m\left\langle c^{2}\right\rangle=(3 / 2) k T$
C1
A1
(c) (either energy required $=(3 / 2) \times 1.38 \times 10^{-23} \times 1.0 \times 6.02 \times 10^{23}$ C1

$$
\begin{equation*}
=12.5 \mathrm{~J} \text { (12J if } 2 \text { s.f. }) \tag{2}
\end{equation*}
$$

A

$$
\text { or } \quad \begin{align*}
\text { energy } & =(3 / 2) \times 8.31 \times 1.0 \tag{C1}\\
& =12.5 \mathrm{~J} \tag{A1}
\end{align*}
$$

(ii) energy is needed to push back atmosphere/do work against atmosphere so total energy required is greater A1
(b) (i) 1. number of (gas) molecules
2. mean square speed/velocity (of gas molecules)
(ii) either $p V=N k T$ or $p V=n R T$ and links n and k and $\left\langle E_{k}\right\rangle=1 / 2 m\left\langle c^{2}\right\rangle$
clear algebra leading to $\left\langle E_{K}\right\rangle=\frac{3}{2} k T$
(c) (i) sum of potential energy and kinetic energy of molecules/atoms/particles reference to random (distribution)
(ii) no intermolecular forces so no potential energy
(change in) internal energy is (change in) kinetic energy and this is proportional to (change in) Tdue to random motion
(iii) (random) kinetic energy increases with temperature no potential energy (so increase in temperature increases internal energy)
(b) (i) zero
(ii) work done $=p \Delta V$

$$
\begin{aligned}
& =4.0 \times 10^{5} \times 6 \times 10^{-4} \\
& =240 \mathrm{~J} \quad \text { (ignore any sign) }
\end{aligned}
$$

(iii)

change	work done / J	heating / J	increase in internal energy / J
$\mathrm{P} \rightarrow \mathrm{Q}$	$\mathbf{+ 2 4 0}$	-600	$\mathbf{- 3 6 0}$
$\mathrm{Q} \rightarrow \mathrm{R}$	0	+720	$\mathbf{+ 7 2 0}$
$\mathrm{R} \rightarrow \mathrm{P}$	$-\mathbf{8 4 0}$	$\mathbf{+ 4 8 0}$	$\mathbf{- 3 6 0}$

(correct signs essential)
(each horizontal line correct, 1 mark - max 3)
$7 \quad$ (a (i) 1 deg C corresponds to $(3840-190) / 100 \Omega$
for resistance 2300Ω, temperature is $100 \times(2300-3840) /(190-3840)$ temperature is $42^{\circ} \mathrm{C}$
(ii) either $286 \mathrm{~K} \equiv 13^{\circ} \mathrm{C}$ or $42^{\circ} \mathrm{C} \equiv 315 \mathrm{~K} \quad \mathrm{~B} 1$
thermodynamic scale does not depend on the property of a substance M1 so change in resistance (of thermistor) with temperature is non-linear A1
(b) heat gained by ice in melting $=0.012 \times 3.3 \times 10^{5} \mathrm{~J}$

$$
=3960 \mathrm{~J}
$$

heat lost by water $=0.095 \times 4.2 \times 10^{3} \times(28-\theta)$
C1
$3960+\left(0.012 \times 4.2 \times 10^{3} \times \theta\right)=0.095 \times 4.2 \times 10^{3} \times(28-\theta)$ C1 $\theta=16^{\circ} \mathrm{C}$
(answer $18^{\circ} \mathrm{C}$ - melted ice omitted - allow max 2 marks)
(use of ($\theta-\mathrm{T}$) then allow max 1 mark)

8 (a e.g. two objects of different masses at same temperature same material would have different amount of heat e.g. temperature shows direction of heat transfer from high to low regardless of objects e.g. when substance melts/boils
heat input but no temperature change
(M1)
(A1)
(M1)
(A1)
(M1)
(A1) any two, M1 + A1 each, max 4
(b) (i) energy losses (to the surroundings) M1
either increase as the temperature rises
or rise is zero when heat loss = heat input A1
(ii) idea of input power $=$ maximum rate of heat loss ... C1
power $=m \times c \times \Delta \theta / \Delta t$
$54=0.96 \times c \times 3.7 / 60$..C1

