Oscillations Mark Scheme 1

Level			International A Level				
Subject		Physics CIE					
Exam Boar	d						
Торіс			Oscillations				
Sub Topic							
Paper Type	2		Theory				
Booklet			Mark Scheme 1				
Time Allowe	ed:	59 minut	tes				
Time Allowe Score:	ed:	59 minut /49	tes				
			tes				
Score:		/49					
Score:		/49					

1	(a	(i)	frequency at which object is made to vibrate/oscillate	B1	[1]
		(ii)	frequency at which object vibrates when free to do so	B1	[1]
		(iii)	maximum amplitude of vibration of oscillating body when forced frequency equals natural frequency (of vibration)	B1 B1	[2]
	(b)	e.g.	vibration of quartz/piezoelectric crystal (<i>what is vibrating</i>) <i>either</i> for accurate timing	М	
			or maximise amplitude of ultrasound waves (why it is useful)	А	[2]
	(c)	e.g.	. vibrating metal panels (<i>what is vibrating</i>) <i>either</i> place strengthening struts across the panel		
			or change shape/area of panel (how it is reduced)	А	[2]
	2 (splacement (directly) proportional to acceleration/force ther displacement and acceleration in opposite directions acceleration (always) towards a (fixed) point	M1 A1	[2]
	(k	o) (i)		A	[1]
		(ii)	$a_{0} = -\omega^{2} x_{0}$ = (-) $(2\pi/1.2)^{2} \times 0.030$ = (-) 0.82 m s ⁻² (special case: using oscillator P gives $x_{0} = 1.7$ cm and $a_{0} = 0.47$ m s ⁻¹ for 1/2)	C1 A1	[2]
		(iii)	max. energy $\propto x_0^2$ ratio = $3.0^2/1.7^2$ = 3.1 (at least 2 s.f.)	C1 A1	[2]
			(if has inverse ratio but has stated max. energy $\propto x_0^2$ then allow 1/2)		
	(0		aph: straight line through (0,0) with negative gradient rrect end-points (–3.0, +0.82) and (+3.0, –0.82)	M1 A1	[2]

3	(a	acceleration/force proportional to displacement (from a fixed point) <i>either</i> acceleration and displacement in opposite directions <i>or</i> acceleration always directed towards a fixed point					
	(b)	(<i>g</i> and <i>r</i> are constant so <i>a</i> is proportional to <i>x</i> negative sign shows <i>a</i> and <i>x</i> are in opposite directions					
		(ii)	(ii) $\omega^2 = g/r \text{ and } \omega = 2\pi/T$				
		$\omega^2 = 9.8/0.28$ = 35					
			$T = 2\pi / \sqrt{35} = 1.06 \text{ s}$ time interval $\tau = 0.53 \text{ s}$	A	[3]		
	(c)	drav	ch: time period constant (or increases very slightly) vn line always 'inside' given loops cessive decrease in peak height	M1 A1 A1	[3]		
4	(a	(i)	either $\omega = 2\pi/T$ or $\omega = 2\pi f$ and $f = 1/T$	C1			
			$\omega = 2\pi/0.30$ = 20.9 rad s ⁻¹ (accept 2 s.f.)	A1	[2]		
		(ii)	kinetic energy = $\frac{1}{2}m\omega^2 x_0^2$ or $v = \omega x_0$ and $\frac{1}{2}mv^2$ = $\frac{1}{2} \times 0.130 \times 20.9^2 \times (1.5 \times 10^{-2})^2 = 6.4 \times 10^{-3} \text{ J}$	C1 A1	[2]		
	(b)	 (b) (i) as magnet moves, flux is cut by <u>cup/aluminium</u> giving rise to induced e.m.f. (in cup) induced e.m.f. gives rise to currents and heating of the cup thermal energy derived from oscillations of magnet so amplitude decreases or 					
	<i>or</i> induced e.m.f. gives rise to currents which generate a magnetic field the magnetic field opposes the motion of the magnet so amplitude decrease						
		(ii)	either use of $\frac{1}{2}m\omega^2 x_0^2$ and $x_0 = 0.75 \text{ cm}$ or x_0 is halved so $\frac{1}{4}$ energy to give new energy = 1.6 mJ	C1			
			either loss in energy = $6.4 - 1.6$ or loss = $\frac{3}{4} \times 6.4$ giving loss = 4.8 mJ	A	[2]		
	(c) $q = mc\Delta\theta$ $4.8 \times 10^{-3} = 6.2 \times 10^{-3} \times 910 \times \Delta\theta$ $\Delta\theta = 8.5 \times 10^{-4} \text{ K}$						

5	(a	acceleration/force proportional to displacement (from a fixed point) <i>either</i> acceleration and displacement in opposite directions <i>or</i> acceleration always directed towards a fixed point								M1 A1	[2]
	(b)	(zero <u>&</u> 0.625s or 0.625s <u>&</u> 1.25s or 1.25s <u>&</u> 1.875s or 1.875s <u>&</u> 2.5s							s <u>&</u> 2.5 s	A1	[1]
		(ii) 1. $\omega = 2\pi / T \text{ and } v_0 = \omega x_0$							C1		
		$\omega = 2\pi/1.25$ = 5.03 rad s ⁻¹						C1			
				= 16	3×3.2 .1 cm s ⁻¹ (<i>a</i>	llow 2 s.f.)				A1	[3]
			2.		$\sqrt{(x_0^2 - x^2)}$ $\sqrt{x_0^2 - x^2}$	$x^{2} - x^{2}$	or	$\frac{1}{2} \times 16.1 = 5.03\sqrt{2.58} = 3.2^2 - x^2$ x = 2.8 cm	$(3.2^2 - x^2)$	C1 A1	[2]
	(c)	ske	etch:	loop with	n origin at it	s centre				M1	

correct intercepts & shape based on (b)(ii)

A1 [2]

<u>CHEMISTRY ONLINE</u> — TUITION —