Oscillations

Mark Scheme 1

Level	International A Level
Subject	Physics
Exam Board	CIE
Topic	Oscillations
Sub Topic	
Paper Type	Theory
Booklet	Mark Scheme 1

Time Allowed:	59 minutes				
Score:	/49				
Percentage:	/100				
A* A	B	C	D	E	U
>85\% '77.5\%	70\%	62.5\%	57.5\%	45\%	<45\%

1 (a (i) frequency at which object is made to vibrate/oscillate
(ii) frequency at which object vibrates when free to do so
(iii) maximum amplitude of vibration of oscillating body

B1 when forced frequency equals natural frequency (of vibration)

B1
(b) e.g. vibration of quartz/piezoelectric crystal (what is vibrating)
either for accurate timing
or maximise amplitude of ultrasound waves (why it is useful)
A
(c) e.g. vibrating metal panels (what is vibrating)

M
either place strengthening struts across the panel
or change shape/area of panel (how it is reduced)
A
$2 \begin{array}{ll}\text { (a) displacement (directly) proportional to acceleration/force } \\ \text { either displacement and acceleration in opposite directions } \\ \text { or acceleration (always) towards a (fixed) point }\end{array} \quad$ M1
(b) (i) $1 / 3 \pi$ rad or 1.05 rad (allow 60° if unit clear)
(ii) $a_{0}=-\omega^{2} x_{0}$

$$
\begin{array}{ll}
=(-)(2 \pi / 1.2)^{2} \times 0.030 & \text { C1 } \\
=(-) 0.82 \mathrm{~m} \mathrm{~s}^{-2} & \mathrm{~A} 1
\end{array}
$$

(special case: using oscillator P gives $x_{0}=1.7 \mathrm{~cm}$ and $a_{0}=0.47 \mathrm{~m} \mathrm{~s}^{-1}$ for $1 / 2$)
(iii) max. energy $\propto x_{0}{ }^{2}$
ratio $=3.0^{2} / 1.7^{2}$
$=3.1$ (at least 2 s.f.)
(if has inverse ratio but has stated max. energy $\propto x_{0}{ }^{2}$ then allow 1/2)
(c) graph: straight line through $(0,0)$ with negative gradient

3 (a acceleration/force proportional to displacement (from a fixed point)
either acceleration and displacement in opposite directions or acceleration always directed towards a fixed point
(b) (g and r are constant so a is proportional to x

B1
negative sign shows a and x are in opposite directions
B1
(ii) $\omega^{2}=g / r$ and $\omega=2 \pi / T$

C1
$\omega^{2}=9.8 / \overline{0.28}$

$$
=35
$$

C1
$T=2 \pi / \sqrt{ } 35=1.06 \mathrm{~s}$
time interval $\tau=0.53 \mathrm{~s}$
(c) sketch: time period constant (or increases very slightly)

M1 drawn line always 'inside' given loops A1 successive decrease in peak height A1

4
(a (i) either $\omega=2 \pi / T$ or $\omega=2 \pi f$ and $f=1 / T$
$\omega=2 \pi / 0.30$

$$
\left.=20.9 \mathrm{rad} \mathrm{~s}^{-1} \text { (accept } 2 \text { s.f. }\right)
$$

A1
(ii) kinetic energy $=1 / 2 m \omega^{2} x_{0}^{2}$ or $v=\omega x_{0}$ and $1 / 2 m v^{2}$

C1

$$
=1 / 2 \times 0.130 \times 20.9^{2} \times\left(1.5 \times 10^{-2}\right)^{2}=6.4 \times 10^{-3} \mathrm{~J}
$$

A1
(b) (i) as magnet moves, flux is cut by cup/aluminium giving rise to induced e.m.f.
(in cup)
induced e.m.f. gives rise to currents and heating of the cup
thermal energy derived from oscillations of magnet so amplitude decreases
or
induced e.m.f. gives rise to currents which generate a magnetic field the magnetic field opposes the motion of the magnet so amplitude decreases
(ii) either use of $1 / 2 m \omega^{2} x_{0}^{2}$ and $x_{0}=0.75 \mathrm{~cm}$ or x_{0} is halved so $1 / 4$ energy
to give new energy $=1.6 \mathrm{~mJ}$
either loss in energy $=6.4-1.6$ or loss $=3 / 4 \times 6.4$ giving loss $=4.8 \mathrm{~mJ}$
(c) $q=m c \Delta \theta$
$4.8 \times 10^{-3}=6.2 \times 10^{-3} \times 910 \times \Delta \theta$ C1 $\Delta \theta=8.5 \times 10^{-4} \mathrm{~K}$

5 (a acceleration/force proportional to displacement (from a fixed point)
either acceleration and displacement in opposite directions or acceleration always directed towards a fixed point
(b) (zero $\underline{\&} 0.625 \mathrm{~s}$ or $0.625 \mathrm{~s} \underline{\&} 1.25 \mathrm{~s}$ or $1.25 \mathrm{~s} \underline{\&} 1.875 \mathrm{~s}$ or $1.875 \mathrm{~s} \underline{\&} 2.5 \mathrm{~s}$

A1
(ii) 1. $\omega=2 \pi / T$ and $v_{0}=\omega x_{0}$ C1 $\omega=2 \pi / 1.25$
$=5.03 \mathrm{rad} \mathrm{s}^{-1}$

$$
v_{0}=5.03 \times 3.2
$$

$$
=16.1 \mathrm{~cm} \mathrm{~s}^{-1}(\text { allow } 2 \text { s.f. })
$$

2. $v=\omega \sqrt{\left(x_{0}^{2}-x^{2}\right)}$

$$
\text { either } \begin{array}{llll}
1 / 2 \omega a=\omega \sqrt{\left(x_{0}^{2}-x^{2}\right)} & \text { or } & 1 / 2 \times 16.1=5.03 \sqrt{\left(3.2^{2}-x^{2}\right)} & \text { C1 } \\
& x_{0}^{2} / 4=x_{0}^{2}-x^{2} & & 2.58=3.2^{2}-x^{2} \\
& & & \\
& x=2.8 \mathrm{~cm} & \text { A1 } 1.8 \mathrm{~cm}
\end{array}
$$

(c) sketch: loop with origin at its centre

