Oscillations

Mark Scheme 2

Level	International A Level
Subject	Physics
Exam Board	CIE
Topic	Oscillations
Sub Topic	
Paper Type	Theory
Booklet	Mark Scheme 2

1
(a) kinetic (energy) $/ \mathrm{KE} / E_{\mathrm{K}}$
(b) either change in energy $=0.60 \mathrm{~mJ}$
or max E proportional to (amplitude) ${ }^{2} /$ equivalent numerical working B1 new amplitude is 1.3 cm
change in amplitude $=0.2 \mathrm{~cm}$
B1
B1

> B1

2 (a (i) any two from $0.3(0) \mathrm{s}, 0.9(0) \mathrm{s}, 1.50 \mathrm{~s}$ (allow 2.1 s etc.)
B1
(ii) either $v=\omega x$ and $\omega=2 \pi / T$ C1

$$
v=(2 \pi / 1.2) \times 1.5 \times 10^{-2}
$$

$$
=0.079 \mathrm{~m} \mathrm{~s}^{-1}
$$

working clear

$$
\text { to give }(0.08 \pm 0.01) \mathrm{m} \mathrm{~s}^{-1}
$$

(b) (sketch: curve from $(\pm 1.5,0)$ passing through $(0,25)$ reasonable shape (curved with both intersections between $y=12.0 \rightarrow 13.0$)

A1
(ii) at max. amplitude potential energy is total energy

B1 total energy $=4.0 \mathrm{~mJ}$ B1

3 (a (i) 1. amplitude $=1.7 \mathrm{~cm}$
2. period $=0.36 \mathrm{~cm}$
frequency $=1 / 0.36$

$$
=2.8 \mathrm{~Hz}
$$

(ii) $\quad a=(-) \omega^{2} x$ and $\omega=2 \pi / T$
acceleration $=(2 \pi / 0.36)^{2} \times 1.7 \times 10^{-2}$
$=5.2 \mathrm{~m} \mathrm{~s}^{-2}$

C1
M1 A0
(b) graph: straight line, through origin, with negative gradient

M1
from $\left(-1.7 \times 10^{-2}, 5.2\right)$ to $\left(1.7 \times 10^{-2},-5.2\right)$
A1
(if scale not reasonable, do not allow second mark)
(c) either kinetic energy $=1 / 2 m \omega^{2}\left(x_{0}{ }^{2}-x^{2}\right)$

$$
\begin{array}{ll}
\text { or potential energy }=1 / 2 m \omega^{2} x^{2} \text { and potential energy }=\text { kinetic energy } & \text { B1 } \\
\begin{array}{l}
1 / 2 m \omega^{2}\left(x_{0}-x^{2}\right)=1 / 2 \times 1 / 2 m \omega^{2} x_{0}^{2} \text { or } 1 / 2 m \omega^{2} x^{2}=1 / 2 \times 1 / 2 m \omega^{2} x_{0}^{2} \\
x_{0}^{2}=2 x^{2} \\
x=x_{0} / \sqrt{ } 2=1.7 / \sqrt{ } 2
\end{array} & \text { C1 } \\
=1.2 \mathrm{~cm} & \text { A1 }
\end{array}
$$

(a (i) $\quad \omega=2 \pi / T$
$=2 \pi / 0.69 \quad$ C1
$=9.1 \mathrm{rad} \mathrm{s}^{-1}$
(allow use of $f=1.5 \mathrm{~Hz}$ to give $\omega=9.4 \mathrm{rad} \mathrm{s}^{-1}$)
(ii) 1. $x=2.1 \cos 9.1 t$
2.1 and 9.1 numerical values B1 use of cos B1
2. $v_{0}=2.1 \times 10^{-2} \times 9.1$ (allow ecf of value of x_{0} from (ii)1.)
$=0.19 \mathrm{~m} \mathrm{~s}^{-1}$
B1 $v=v_{0} \sin 9.1 t$ (allow $\cos 9.1 t$ if \sin used in (ii)1.)

B
(b) energy $=$ either $1 / 2 m v_{0}{ }^{2}$ or $1 / 2 m \omega^{2} x_{0}{ }^{2}$
$=$ either $1 / 2 \times 0.078 \times 0.19^{2}$ or $1 / 2 \times 0.078 \times 9.1^{2} \times\left(2.1 \times 10^{-2}\right)^{2} \quad$ C1
$=1.4 \times 10^{-3} \mathrm{~J}$
A1
(a) straight line through origin M1
shows acceleration proportional to displacement A1
negative gradient M1
shows acceleration and displacement in opposite directions
A1
(b) (i) 2.8 cm
(ii) either gradient $=\omega^{2}$ and $\omega=2 \pi f$ or $a=-\omega^{2} x$ and $\omega=2 \pi f$ gradient $=13.5 /\left(2.8 \times 10^{-2}\right)=482$
$\omega=22 \mathrm{rad} \mathrm{s}^{-1}$
C1

$$
\text { frequency }=(22 / 2 \pi=) 3.5 \mathrm{~Hz} \mathrm{z}
$$

(c) e.g. lower spring may not be extended
e.g. upper spring may exceed limit of proportionality/elastic limit (any sensible sưggestion)

B1

6 (a (i) 1. $0.1 \mathrm{~s}, 0.3 \mathrm{~s}, 0.5 \mathrm{~s}$, etc (any two)
2. either $0,0.4 \mathrm{~s}, 0.8 \mathrm{~s}, 1.2 \mathrm{~s}$
or
$0.2 \mathrm{~s}, 0.6 \mathrm{~s}, 1.0 \mathrm{~s}$ (any two) A
A [1]
(ii) period $=0.4 \mathrm{~s}$

C
frequency $=(1 / 0.4=) 2.5 \mathrm{~Hz} \quad$ A1
(iii) phase difference $=90^{\circ}$ or $1 / 2 \pi$ rad

B1
(b) frequency $=2.4-2.5 \mathrm{~Hz}$
(c) e.g. attach sheet of card to trolley increases damping / frictional force e.g. reduce oscillator amplitu reduces power/energy input to system
(a) $a=(-) \omega^{2} x$ and $\omega=2 \pi / T$
C1
$T=0.60 \mathrm{~s}$
C1
$a=\left(4 \pi^{2} \times 2.0 \times 10^{-2}\right) /(0.6)^{2}$

$$
=2.2 \mathrm{~ms}^{-2}
$$

(b) sinusoidal wave with all values positive B1
all values positive, all peaks at E_{K} and energy $=0$ at $t=0$ B1 period $=0.30 \mathrm{~s}$ B1

