Oscillations Mark Scheme 2

Level	International A Level			
Subject	Physics			
Exam Board	CIE			
Торіс	Oscillations			
Sub Topic				
Paper Type	Theory			
Booklet	Mark Scheme 2			
Time Allowed:	63 minutes			
Time Allowed: Score:	63 minutes /52			
Time Allowed:	63 minutes			
Time Allowed: Score:	63 minutes /52			
Time Allowed: Score:	63 minutes /52			

1	(a) kinetic (energy)/KE/ <i>E</i> _κ	B1	[1]
	(b) either change in energy = 0.60 mJ or <u>max</u> E proportional to (amplitude) ² /equivalent numerical working new amplitude is 1.3 cm change in amplitude = 0.2 cm	B1 B1 B1	[3]
2	(a (i) any two from 0.3(0) s, 0.9(0) s, 1.50 s (allow 2.1 s etc.)	B1	[1]
	(ii) either $v = \omega x$ and $\omega = 2\pi/T$ $v = (2\pi/1.2) \times 1.5 \times 10^{-2}$ $= 0.079 \text{ ms}^{-1}$ or gradient drawn clearly at a correct position working clear to give (0.08 ± 0.01) m s^{-1}	C1 M1 A0 (C1) (M1) (A0)	[2]
	(b) (sketch: <u>curve</u> from (±1.5, 0) passing through (0, 25) reasonable shape (<i>curved with both intersections between</i> $y = 12.0 \rightarrow 13.0$)	M1 A1	[2]
	 (ii) at max. amplitude potential energy is total energy total energy = 4.0 mJ 	B1 B1	[2]
3	 (a (i) 1. amplitude = 1.7 cm 2. period = 0.36 cm 		[1]
	frequency = $1/0.36$ = 2.8 Hz	A1	[2]
	(ii) $a = (-)\omega^2 x$ and $\omega = 2\pi/T$ acceleration = $(2\pi/0.36)^2 \times 1.7 \times 10^{-2}$ = $5.2 \mathrm{m s^{-2}}$	C1 M1 A0	[2]
	(b) graph: straight line, through origin, with negative gradient from $(-1.7 \times 10^{-2}, 5.2)$ to $(1.7 \times 10^{-2}, -5.2)$ (<i>if scale not reasonable, do not allow second mark</i>)	M1 A1	[2]
	(c) either kinetic energy = $\frac{1}{2}m\omega^2(x_0^2 - x^2)$ or potential energy = $\frac{1}{2}m\omega^2 x^2$ and potential energy = kinetic energy $\frac{1}{2}m\omega^2(x_0 - x^2) = \frac{1}{2} \times \frac{1}{2}m\omega^2 x_0^2$ or $\frac{1}{2}m\omega^2 x^2 = \frac{1}{2} \times \frac{1}{2}m\omega^2 x_0^2$ $x_0^2 = 2x^2$ $x = x_0 / \sqrt{2} = 1.7 / \sqrt{2}$	B1 C1	
	$x = x_0 / \sqrt{2} = 1.7 / \sqrt{2}$ = 1.2 cm	A1	[3]

4	(a	(i)	$\omega = 2\pi / T$ = $2\pi / 0.69$ = 9.1 rad s ⁻¹ (allow use of $f = 1.5$ Hz to give $\omega = 9.4$ rad s ⁻¹)	C1 A1	[2]
	((ii)	1. $x = 2.1 \cos 9.1t$ 2.1 and 9.1 numerical values use of cos	B1 B1	[2]
			2. $v_0 = 2.1 \times 10^{-2} \times 9.1$ (allow ecf of value of x_0 from (ii)1.) = 0.19 m s ⁻¹ $v = v_0 \sin 9.1t$ (allow $\cos 9.1t$ if $\sin used in$ (ii)1.)	B1 B	[2]
	(b)	ene	rgy = either $\frac{1}{2} mv_0^2$ or $\frac{1}{2} m\omega^2 x_0^2$ = either $\frac{1}{2} \times 0.078 \times 0.19^2$ or $\frac{1}{2} \times 0.078 \times 9.1^2 \times (2.1 \times 10^{-2})^2$ = 1.4×10^{-3} J	C1 A1	[2]
5	(a)	sh ne	aight line through origin ows acceleration proportional to displacement gative gradient ows acceleration and displacement in opposite directions	M1 A1 M1 A1	[4]
		(b) (i) 2.8 cm	A1	[1]
			(ii) either gradient = ω^2 and $\omega = 2\pi f$ or $a = -\omega^2 x$ and $\omega = 2\pi f$ gradient = 13.5/(2.8 × 10 ⁻²) = 482	C1	
			gradient = 13.57(2.8 × 10 ⁻⁷) = 482 ω = 22 rad s ⁻¹ frequency = (22/2 π =) 3.5 Hz z	C1	[3]
		(c) e.g. lower spring may not be extended		
			e.g. <u>upper</u> spring may exceed limit of proportionality/elastic limit (any sensible suggestion)	B1	[1]

6	(a (i) 1. 0.1 s, 0.3 s, 0.5 s, etc (<i>any two</i>)	А	[1]
	2. either 0, 0.4 s, 0.8 s, 1.2 s		
	or 0.2 s, 0.6 s, 1.0 s (<i>any two</i>)	А	[1]
	(ii) period = 0.4 s frequency = (1/0.4 =) 2.5 Hz	C A1	[2]
	(iii) phase difference = 90 ° or $\frac{1}{2} \pi$ rad	B1	[1]
	(b) frequency = 2.4 – 2.5 Hz		[1]
	(c) e.g. attach sheet of card to trolley increases damping / frictional force e.g. reduce oscillator amplitu reduces power/energy input to system	M1 A1 (M1) (A1)	[2]
7	(a) $a = (-)\omega^2 x$ and $\omega = 2\pi/T$ T = 0.60 s $a = (4\pi^2 \times 2.0 \times 10^{-2}) / (0.6)^2$ $= 2.2 m s^{-2}$	C1 C1 A1	[3]
	(b) sinusoidal wave with all values positive all values positive, all peaks at $E_{\rm K}$ and energy = 0 at t = 0 period = 0.30 s	B1 B1 B1	[3]

CHEMISTRY ONLINE — TUITION —