Oscillations

Mark Scheme 3

Level	International A Level
Subject	Physics
Exam Board	CIE
Topic	Oscillations
Sub Topic	
Paper Type	Theory
Booklet	Mark Scheme 3

Time Allowed:	58 minutes						
Score:	/48						
Percentage:	/100						
A*	A	B	C	D	E	U	
$>85 \%$	77.5%	70%	62.5%	57.5%	45%	$<45 \%$	

1 (a energy $=1 / 2 m \omega^{2} a^{2}$ and $\omega=2 \pi f$
C1

$$
\begin{array}{ll}
=1 / 2 \times 37 \times 10^{-3} \times(2 \pi \times 3.5)^{2} \times\left(2.8 \times 10^{-2}\right)^{2} & \text { M1 } \\
=7.0 \times 10^{-3} \mathrm{~J} & \text { A0 }
\end{array}
$$

(allow $2 \pi \times 3.5$ shown as 7π)
Energy $=1 / 2 m v^{2}$ and $v=r \omega$
Correct substitution
Energy $=7.0 \times 10^{-3} \mathrm{~J}$
(b) $E_{K}=E_{P}$
$1 / 2 m \omega^{2}\left(a^{2}-x^{2}\right)=1 / 2 m \omega^{2} x^{2}$ or E_{K} or $E_{P}=3.5 \mathrm{~mJ}$
C1
$x=a / \sqrt{ } 2=2.8 / \sqrt{ } 2 \quad$ or $E_{K}=1 / 2 m \omega^{2}\left(a^{2}-x^{2}\right) \quad$ or $E_{P}=1 / 2 m \omega^{2} x^{2} \quad$ C1
$=2.0 \mathrm{~cm}$
A1
(E_{K} or $E_{\mathrm{P}}=7.0 \mathrm{~mJ}$ scores $0 / 3$)
Allow: $k=17.9$

$$
\begin{equation*}
E=1 / 2 k x^{2} \tag{C1}
\end{equation*}
$$

$$
\begin{equation*}
x=2.0 \mathrm{~cm} \tag{C1}
\end{equation*}
$$

(c) graph: horizontal line, y-intercept $=7.0 \mathrm{~mJ}$ with end-points of line at +2.8 cm and -2.8 cm
(ii) graph: reasonable curve

B1
with maximum at $(0,7.0)$ end-points of line at $(-2.8,0)$ and (+2.8, 0)

B1
(iii) graph: inverted version of (ii)

M1
with intersections at ($-2.0,3.5$) and (+2.0, 3.5)
A1
(Allow marks in (iii), but not in (ii), if graphs K \& P are not labelled)
(d) gravitational potential energy

B1

2 (a (i) amplitude remains constant
(ii) amplitude decreases gradually M1 light damping A1
(iii) period $=0.80 \mathrm{~s}$ C1
frequency $=1.25 \mathrm{~Hz}$ (period not 0.8 s , then $0 / 2$)
(b) (i) (induced) e.m.f. is proportional to rate of change/cutting of (magnetic) flux (linkage)
(ii) a current is induced in the coil
as magnet moves in coil A1 current in resistor gives rise to a heating effect M1 thermal energy is derived from energy of oscillation of the magnet

3 (a) acceleration proportional to displacement/distance from fixed point M1 and in opposite directions/directed towards fixed point A1
(b) energy $=1 / 2 m \omega^{2} x_{0}{ }^{2}$ and $\omega=2 \pi f$

$$
\begin{aligned}
& =1 / 2 \times 5.8 \times 10^{-3} \times(2 \pi \times 4.5)^{2} \times\left(3.0 \times 10^{-3}\right)^{2} \\
& =2.1 \times 10^{-5} \mathrm{~J}
\end{aligned}
$$

(c) (i) at maximum displacement M1 above rest position A1

4
(a) acceleration / force proportional to displacement from a fixed point M1 acceleration / force (always) directed towards that fixed point / in opposite direction to displacement A1
(b) (i) $A \rho g / m$ is a constant and so acceleration proportional to x B1
negative sign shows acceleration towards a fixed point / in opposite direction to displacement B1 direction to displacement B1
(ii) $\omega^{2}=(A \rho g / m) \quad$ C1
$\omega=2 \pi f$ C1
$(2 \times \pi \times 1.5)^{2}=\left(\left\{4.5 \times 10^{-4} \times 1.0 \times 10^{3} \times 9.81\right\} / \mathrm{m}\right)$ C1 $m=50 \mathrm{~g}$ A1 [2]

5 (a (i) resonance
(ii) amplitude 16 mm and frequency 4.6 Hz
(b) (i) $a=(-) \omega^{2} x$ and $\omega=2 \pi f$

C1
$a=4 \pi^{2} \times 4.6^{2} \times 16 \times 10^{-3}$

$$
=13.4 \mathrm{~m} \mathrm{~s}^{-2}
$$

$$
\text { (ii) } \begin{aligned}
F & =m a \\
& =50 \times 10^{-3} \times 13.4 \\
& =2.0 \mathrm{~N}
\end{aligned}
$$

(c) line always 'below' given line and never zero peak is at 4.6 Hz (or slightly less) and flatter

C1
A1
C1

A
[2]

M1
A1

