Oscillations Mark Scheme 3

	_					
Level			Internation	al A Level		
Subject			Physics			
Exam Board			CIE			
Торіс			Oscillations	;		
Sub Topic						
Paper Type			Theory			
Booklet			Mark Scher	ne 3		
Time Allowed:		58 minute	s			
Score:		/48				
Percentage:		/100				
A*	Α	В	С	D	E	U
>85% ′		700/			450/	

1	(a	energy = $\frac{1}{2}$ = $\frac{1}{2}$ = 7. (allow $2\pi \times 3$	$m\omega^2 a^2$ and $\omega = 2\pi f$ $a \times 37 \times 10^{-3} \times (2\pi \times 3.5)^2 \times (2.8 \times 10^{-2})^2$ $0 \times 10^{-3} J$ 3.5 shown as 7π)	C1 M1 A0	[2]
		Energy = $\frac{1}{2}$ / Correct subs Energy = 7.0	mv^2 and $v = r\omega$ stitution $0 \times 10^{-3} \text{ J}$	(C1) (M1) (A0)	
	(b)	$E_{\rm K} = E_{\rm P}$ $\frac{1}{2}m\omega^2 (a^2 - x)$ $x = a/\sqrt{2} = 2$ $= 2.0 \rm cm$ $(E_{\rm K} \rm or E_{\rm P} = 7$	f_{X}^{2}) = $\frac{1}{2}m\omega^{2}x^{2}$ or E_{K} or E_{P} = 3.5 mJ 2.8 $\sqrt{2}$ or E_{K} = $\frac{1}{2}m\omega^{2}(a^{2} - x^{2})$ or E_{P} = $\frac{1}{2}m\omega^{2}x^{2}$ 7.0 mJ scores 0/3)	C1 C1 A1	[3]
		Allow: <i>k</i> = <i>E</i> = <i>x</i> = 2	17.9 ¹ / ₂ kx ² 2.0 cm	(C1) (C1) (A1)	
	(c)	graph:	horizontal line, <i>y</i> -intercept = 7.0 mJ with end-points of line at +2.8 cm and -2.8 cm		[1]
		(ii) graph:	reasonable curve with maximum at (0.7.0) end-points of line at (-2.8.0)	B1	
			and (+2.8, 0)	B1	[2]
	((iii) graph: (Allow mar	inverted version of (ii) with intersections at (–2.0, 3.5) and (+2.0, 3.5) rks in (iii) , but not in (ii) , if graphs K & P are not labelled)	M1 A1	[2]
	(d)	<u>gravitational</u>	potential energy	B1	[1]

CHEMISTRY ONLINE — TUITION —

2	(a	(i)	amplitude remains constant	B1	[1]
		(ii)	<u>amplitude</u> decreases gradually light damping	M1 A1	[2]
		(iii)	period = 0.80 s frequency = 1.25 Hz (<i>period not 0.8 s, then 0/2</i>)	C1 A1	[2]
	(b)	(i)	(induced) e.m.f. is proportional to rate of change/cutting of (magnetic) flux (linkage)	M1 A1	[2]
		(ii)	a current is induced in the coil as magnet moves in coil current in resistor gives rise to a heating effect thermal energy is derived from energy of oscillation of the magnet	M1 A1 M1 A1	[4]
3	(a)) acc anc	eleration proportional to displacement/distance from fixed point I in opposite directions/directed towards fixed point	M1 A1	[2]
	(b) ene	ergy = $\frac{1}{2}m\omega^2 x_0^2$ and $\omega = 2\pi f$ = $\frac{1}{2} \times 5.8 \times 10^{-3} \times (2\pi \times 4.5)^2 \times (3.0 \times 10^{-3})^2$ = 2.1×10^{-5} J	C1 C1 A1	[3]
	(c)) (i)	at maximum displacement above rest position	M1 A1	[2]
		(ii)	acceleration = $(-)\omega^2 x_0$ and acceleration = 9.81 or g 9.81 = $(2\pi \times 4.5)^2 \times x_0$	C1	
			$x_0 = 1.2 \times 10^{-2} \mathrm{m}$	A1	[2]

4	(a)	acceleration / force proportional to displacement from a fixed point		M1	
		direction to displacement			[2]
	(b)	(i)	$A\rho g \mid m$ is a constant and so acceleration proportional to x	B1	
		direction to displacement		B1	[2]
		(ii)	$\omega^{2} = (A\rho g / m)$ $\omega = 2\pi f$ $(2 \times \pi \times 1.5)^{2} = (\{4.5 \times 10^{-4} \times 1.0 \times 10^{3} \times 9.81\} / m)$	C1 C1 C1	
5	(a	(i)			[1]
5	(a	(1)	resonance		[']
		(ii)	amplitude 16 mm and frequency 4.6 Hz		[1]
	(b)	(i)	$a = (-)\omega^2 x$ and $\omega = 2\pi f$ $a = 4\pi^2 \times 4.6^2 \times 16 \times 10^{-3}$ $= 13.4 \mathrm{m s^{-2}}$	C1 C1 A1	[3]
		(ii)	F = ma	C1	
			$= 50 \times 10^{-3} \times 13.4$ = 2.0 N	А	[2]
	(c)	line pea	always 'below' given line and never zero k is at 4.6 Hz (or slightly less) and flatter	M1 A1	[2]

<u>CHEMISTRY ONLINE</u> — TUITION —