Oscillations

Mark Scheme 4

Level	International A Level
Subject	Physics
Exam Board	CIE
Topic	Oscillations
Sub Topic	
Paper Type	Theory
Booklet	Mark Scheme 4

Time Allowed: 56 minutes

Score: /46

Percentage: /100

CHEMISTRY ONLINE

A*	Α	В	С	D	Е	U
>85%	'77.5%	70%	62.5%	57.5%	45%	<45%

1 (a (i) 8.0 cm A1 [1]

- (ii) $2\pi f = 220$ C1 f = 35 (condone unit) A [2]
- (iii) line drawn mid-way between AB and CD (allow ±2 mm) B [1]
- (iv) $v = \omega a$ C1 = 220 × 4.0 = 880 cm s⁻¹ A1 [2]
- (b) (i) 1. line drawn 3 cm above AB (allow ±2 mm) B [1]
 2. arrow pointing upwards B1 [1]
 - (ii) 1. line drawn 3 cm above AB (allow ±2 mm) B [1] 2. arrow pointing downwards B1 [1]
 - (iii) $v = \omega \sqrt{(a^2 x^2)}$ = 220 × $\sqrt{(4.0^2 - 2.0^2)}$ = 760 cm s⁻¹ A1 [2] (incorrect value for x, 0/2 marks)
- 2 (a) (i) to-and-fro / backward and forward motion (between two limits) B1 [1]
 - (ii) no energy loss or gain / no <u>external</u> force acting / constant energy / constant amplitude B1 [1]
 - (iii) acceleration directed towards a fixed point B1 acceleration proportional to <u>distance from the fixed point</u> / displacement B1 [2]
 - (b) acceleration is constant (magnitude) M1 so cannot be s.h.m. A1 [2]

3	(a	(i)	reduction in energy (of the oscillations) reduction in amplitude / energy of oscillations due to force (always) opposing motion / resistive forces any two of the above, max 2	(B1) (B1) (B1)	[2]
		(ii)	amplitude is decreasing (very) gradually / oscillations would continue (for a long time) /many oscillations light damping	M1 A1	[2]
	(b)	(i)	frequency = $1/0.3$ = 3.3 Hz allow points taken from time axis giving $f = 3.45 \text{ Hz}$	A1	[1]
		(ii)	energy = $\frac{1}{2} mv^2$ and $v = \omega a$ = $\frac{1}{2} \times 0.065 \times (2\pi/0.3)^2 \times (1.5 \times 10^{-2})^2$ = 3.2 mJ	C1 M1 A0	[2]
4	(c)		olitude reduces exponentially / does not decrease linearly will be not be 0.7 cm	M1 A1	[2]
	(a	a) (i)	amplitude = 0.2 mm	A1	[1]
		(ii)	period = 1.2 msfrequency = 830 Hz		[2]
	(b	o) (any <u>two</u> of zero, 0.6 ms and 1.2 ms	A1	[1]
		(ii)	any <u>two</u> of 0.3 ms, 0.9 ms, 1.5 ms	A1	[1]
	(c	or	ther $v = \omega x_0 = 2\pi f x_0$ $= 2\pi \times 830 \times 0.2 \times 10^{-3} = 1.05 \text{ m s}^{-1}$ $= 1.00 \text{ slope of graph} = 1.0 \text{ m s}^{-1} \dots \text{(allow } \pm 0.1 \text{ m s}^{-1}) \dots \text{(allow } \pm 0.1 \text{ m s}^{-1})$ $= 1/2 \times 2.5 \times 10^{-3} \times 1.05^2 \dots \text{(allow } \pm 0.1 \text{ m s}^{-1}) \dots \text{(allow } \pm 0.1 \text{ m s}^{-1})$ $= 1.4 \times 10^{-3} \text{ J} \dots \text{(allow } \pm 0.1 \text{ m s}^{-1}) \dots \text{(allow } $	<u>L</u>	[3]
	(c	d) (large / maximum amplitude of vibrationwhen impressed frequency equals natural frequency of vibration		[2]
		(ii)	motor in machine impresses frequency on panel e.g. car suspension system vibrates / oscillates going over bumps would give large amplitude vibrations	(A1) (M1) (A1)	
			any feasible example, M1 + A1		[2]

5	(a)	straight line through origin	[2]
	(b)	$a = -\omega^2 x$ and $\omega = 2\pi f$	[3]
	(c)	straight line between(-0.3,+190) and (+0.3,-190)	[2]

[Total: 7]

