Oscillations

Mark Scheme 5

Level	International A Level
Subject	Physics
Exam Board	CIE
Topic	Oscillations
Sub Topic	
Paper Type	Theory
Booklet	Mark Scheme 5

Time Allowed: 80 minutes

Score: /66

Percentage: /100

CHEMISTRYONLINE

A*	А	В	С	D	Е	U
>85%	'77.5%	70%	62.5%	57.5%	45%	<45%

(a (i) $(\theta =) \omega t$ (allow any subject if all terms given) 1

В1 [1]

(ii) (SQ =) $r \sin \omega t$ (allow any subject if all terms given)

В1 [1]

(b) this is the solution of the equation $a = -\omega^2 x$ $a = -\omega^2 x$ is the (defining) equation of s.h.m.

M1 Α1 [2]

(c) (i) $f = \omega / 2\pi$ $= 4.7 / 2\pi$ = 0.75 Hz C1

C1

(ii) $v = r\omega$ (r must be identified)

Α1 [2]

 $= 4.7 \times 12$ = 56 cm s⁻¹

Α1 [2]

- (a) acceleration / force (directly) proportional to displacement and either directed towards fixed point
 - or acceleration & displacement in opposite directions

A1 [2]

M1

C₁

- (b) (i) maximum / minimum height / 8 mm above cloth / 14 mm below cloth
- **B1** [1] A1

[1]

- (ii) 1. a = 11mm 2. $\omega = 2\pi f$
 - $=2\pi\times4.5$ $= 28.3 \text{ rad s}^{-1}$ (do not allow 1 s.f.)

A1 [2]

(c) ($v = \omega a$ $= 28.3 \times 11 \times 10^{-3}$ $= 0.31 \text{ m s}^{-1}$ (do not allow 1 s.f.)

- C₁
 - Α [2]

(ii) $V = \omega \sqrt{(a^2 - y^2)}$ $y = 3 \,\mathrm{mm}$ $= 28.3 \times 10^{-3} \sqrt{(11^2 - 3^2)}$ $= 0.30 \text{ m s}^{-1} \text{ (allow 1 s.f.)}$

- C1
- C1 A1 [3]

3 (i) amplitude = 0.5 cm

[1] Α1

(ii) period = 0.8 s

Α1 [1]

- **(b) (i)** $\omega = 2\pi / T$
 - $= 7.85 \text{ rad s}^{-1}$

C₁

correct use of $v = \omega \sqrt{(x_0^2 - x^2)}$ = $7.85 \times \sqrt{((0.5 \times 10^{-2})^2 - (0.2 \times 10^{-2})^2)}$

B1

- $= 3.6 \text{ cm s}^{-1}$ (if tangent drawn or clearly implied (B1) $3.6 \pm 0.3 \text{ cm s}^{-1}$ (A2)

Α1 [3]

but allow 1 mark for > ± 0.3 but $\leq \pm 0.6$ cm s⁻¹)

A1 [1]

(ii) d = 15.8 cm

- **B**1
- (c) (i) (continuous) loss of energy / reduction in amplitude (from the oscillating system) caused by force acting in opposite direction to the motion / friction / viscous forces
- [2] **B1**
- (ii) same period / small increase in period line displacement always less than that on Fig.3.2 (ignore first T/4) peak progressively smaller
- **B1** M1 A1
 - [3]

4	4	(a	(i)	0.8 cmB	1	[1]	
		(1	ii)	(max.) kinetic energy = 2.56 mJ	1 1 1 1 1	[6]	
		(b)	(i)	line parallel to x-axis at 2.56 mJ	1	[1]	
		(ii)	1 4.0 HzB	1		
				2 0.50 cm (allow ±0.03 cm)	1	[2]	
5	(a)	eith ω f =	her = 2 : (1/:	$a = -\omega^2 x$ clear $\omega = \sqrt{(2k/m)}$ or $\omega^2 = (2k/m)$ πf $2\pi/\sqrt{(2 \times 300)/0.240)}$ $6 \approx 8 \text{ Hz}$	C1 B1 C1 B1 A0		[4
	(b)	(i)	ı	resonance	В1		[1
		(ii)	,	R Hz	R1		Г1

(c)

(increase amount of) damping

without altering $(k \text{ or}) m \dots$ (some indirect reference is acceptable) sensible suggestion

В1

B1 B1

[3]

6	(a	(i)	1.0	B1	[1]
		(ii)	40 Hz	B1	[1]
	(b)	(i)	speed = $2\pi fa$ = $2\pi \times 40 \times 42 \times 10^{-3}$	C1	
			= 10.6 m s^{-1}	A1	[2]
		(ii)	acceleration = $4\pi^2 f^2 a$ = $(80\pi)^2 \times 42 \times 10^{-3}$	C1	
			= $(80\pi)^2 \times 42 \times 10^{-3}$ = 2650 m s ⁻²	A1	[2]
	(c)	(i)	S marked correctly (on 'horizontal line through centre of wheel)	B1	
		(ii)	A marked correctly (on 'vertical line' through centre of wheel)	B1	[2]

[2]