Wave Basics Question paper 3

Level	International A Level
Subject	Physics
Exam Board	CIE
Торіс	Waves
Sub Topic	Wave Basics
Paper Type	Theory
Booklet	Question paper 3

Time Allowed:	76 minutes
Score:	/63
Percentage:	/100

А	В	С	D	E	U	

>85%	'77.5%	70%	62.5%	57.5%	45%	<45%

A*

1 Fig. 5.1 shows the variation with time *t* of the displacements x_A and x_B at a point P of two sound waves A and B.

- (c) The intensity of wave A alone at point P is I.
 - (i) Show that the intensity of wave B alone at point P is $\frac{4}{9}I$.

(ii) Calculate the resultant intensity, in terms of I, of the two waves at point P.

resultant intensity = I [2]

[2]

- (d) Determine the resultant displacement for the two waves at point P
 - (i) at time $t = 3.0 \, \text{ms}$,

resultant displacement = cm [1]

(ii) at time t = 4.0 ms.

resultant displacement = cm [2]

- 2 The spectrum of electromagnetic waves is divided into a number of regions such as radio waves, visible light and gamma radiation.
 - (a) State three distinct features of waves that are common to all regions of the electromagnetic spectrum.
 - (b) A typical wavelength of visible light is 495 nm. Calculate the number of wavelengths of this light in a wave of length 1.00 m.

number = ...

- (c) State a typical wavelength for
 - (i) X-rays,

wavelength = m

(ii) infra-red radiation.

wavelength =	 m
	[2]

3 Fig. 2.1 shows the variation with distance *x* along a wave of its displacement *d* at a particular time.

Fig. 2.1

The wave is a progressive wave having a speed of $330 \,\mathrm{m \, s^{-1}}$.

(a) (i) Use Fig. 2.1 to determine the wavelength of the wave.

wavelength = m

(ii) Hence calculate the frequency of the wave.

(b) A second wave has the same frequency and speed as the wave shown in Fig. 2.1 but has double the intensity. The phase difference between the two waves is 180°.

On the axes of Fig. 2.1, sketch a graph to show the variation with distance x of the displacement d of this second wave. [2]

(a) Fig. 4.1 shows the variation with time t of the displacement x of one point in a 4 progressive wave.

Fig. 4.1

Fig. 4.2

- (i) Use Figs. 4.1 and 4.2 to determine, for this wave,
 - 1. the amplitude,

amplitude = mm

2. the wavelength,

wavelength = m

3. the frequency,

4. the speed.

frequency = Hz

speed = m s⁻¹ [6]

(ii) On Fig. 4.2, draw a second wave having the same amplitude but half the frequency as that shown. [1]

(b) Light of wavelength 590 nm is incident at right angles to a diffraction grating having 5.80×10^5 lines per metre, as illustrated in Fig. 4.3.

A screen is placed parallel to and 1.50 m from the grating. Calculate

(i) the spacing, in μ m, of the lines of the grating,

spacing = µm

(ii) the angle θ to the original direction of the light at which the first order diffracted image is seen,

angle =°

(iii) the minimum length *L* of the screen so that both first order diffracted images may be viewed at the same time on the screen.

5 The variation with time *t* of the displacement *x* of a point in a transverse wave T_1 is shown in Fig. 5.1.

- Fig. 5.1
- (a) By reference to displacement and direction of travel of wave energy, explain what is meant by a *transverse wave*.

- (b) A second transverse wave T_2 , of amplitude A has the same waveform as wave T_1 but lags behind T_1 by a phase angle of 60°. The two waves T_1 and T_2 pass through the same point.
 - (i) On Fig. 5.1, draw the variation with time t of the displacement x of the point in wave T₂.
 - (ii) Explain what is meant by the principle of superposition of two waves.

<u>CHEMISTRY ONULINE</u>

.....[2]

- (iii) For the time t = 1.0 s, use Fig. 5.1 to determine, in terms of A,
 - **1.** the displacement due to wave T_1 alone,

displacement =

2. the displacement due to wave T_2 alone,

displacement =

3. the resultant displacement due to both waves.

displacement =

6 (a) Two overlapping waves of the same type travel in the same direction. The variation with distance *x* of the displacement *y* of each wave is shown in Fig. 6.1.

Fig. 6.1

The speed of the waves is $240 \,\mathrm{m\,s^{-1}}$. The waves are coherent and produce an interference pattern.

(i) Explain the meaning of *coherence* and *interference*.

coherence:			
interference:	- U		
			[2]

(ii) Use Fig. 6.1 to determine the frequency of the waves.

(iii) State the phase difference between the waves.

Calculate the distance AB.

(i)

phase difference =° [1]

- (iv) Use the principle of superposition to sketch, on Fig. 6.1, the resultant wave. [2]
- (b) An interference pattern is produced with the arrangement shown in Fig. 6.2.

Fig. 6.2 (not to scale)

Laser light of wavelength λ of 546 nm is incident on the slits S₁ and S₂. The slits are a distance 0.13 mm apart. The distance between the slits and the screen is 85 cm.

Two points on the screen are labelled A and B. The path difference between S_1A and S_2A is zero. The path difference between S_1B and S_2B is 2.5 λ . Maxima and minima of intensity of light are produced on the screen.

Dr. Asher Ranaasherrana@chemistryonlinetuition.com.....asherrana@chemistryonlinetuition.com.[1]

The Young modulus of the metal of a wire is 1.8×10^{11} Pa. The wire is extended and the 7 (a)

strain

produced is 8.2×10^{-4} . Calculate the stress in GPa.

stress =GPa [2]

(b) An electromagnetic wave has frequency 12THz.

Calculate the wavelength in µm. (i)

(ii) State the name of the region of the electromagnetic spectrum for this frequency.

......[1]

(c) An object B is on a horizontal surface. Two forces act on B in this horizontal plane. A vector diagram for these forces is shown to scale in Fig. 1.1.

A force of 7.5N towards north and a force of 2.5N from 30° north of east act on B. The mass of B is 750 g.

- (i) On Fig. 1.1, draw an arrow to show the approximate direction of the resultant of these two forces. [1]
- (ii) 1. Show that the magnitude of the resultant force on B is 6.6 N.

2. Calculate the magnitude of the acceleration of B produced by this resultant force.

magnitude = $m s^{-2} [2]$

(iii) Determine the angle between the direction of the acceleration and the direction of the 7.5N force.

angle =° [1]