Ultrasound

Question paper 2

Level	International A Level
Subject	Physics
Exam Board	CIE
Topic	Waves
Sub Topic	Ultrasound
Paper Type	Theory
Booklet	Question paper 2

Time Allowed: 51 minutes

Score: /42

Percentage: /100

A*	Α	В	С	D	Е	U
>85%	'77.5%	70%	62.5%	57.5%	45%	<45%

1 (a) State what is meant by the *acoustic impedance Z* of a medium.

.....

.....[1]

(b) Two media have acoustic impedances Z_1 and Z_2 . The intensity reflection coefficient α for the boundary between the two media is given by

$$\alpha = \frac{(Z_2 - Z_1)^2}{(Z_2 + Z_1)^2}.$$

Describe the effect on the transmission of ultrasound through a boundary where there is a large difference between the acoustic impedances of the two media.

.....[3]

(c) Data for the acoustic impedance Z and the absorption coefficient μ for fat and for muscle are shown in Fig. 10.1.

	$Z/\text{kg m}^{-2}\text{s}^{-1}$	μ/m^{-1}
fat	1.3 × 10 ⁶	48
muscle	1.7 × 10 ⁶	23

Fig. 10.1

The thickness x of the layer of fat on an animal, as illustrated in Fig. 10.2, is to be investigated using ultrasound.

Fig. 10.2

The intensity of the parallel ultrasound beam entering the surface S of the layer of fat is I. The beam is reflected from the boundary between fat and muscle. The intensity of the reflected ultrasound detected at the surface S of the fat is 0.012 I. Calculate

(i) the intensity reflection coefficient at the boundary between the fat and the muscle,

coefficient =	 	[2]

(ii) the thickness x of the layer of fat.

2 (a) (i) State what is meant by the acoustic impedance of a medium.

(ii) Data for some media are given in Fig. 10.1.

medium	speed of ultrasound / ms ⁻¹	acoustic impedance / kg m ⁻² s ⁻¹
air gel soft tissue bone	330 1500 1600 4100	4.3×10^{2} 1.5×10^{6} 1.6×10^{6} 7.0×10^{6}

Fig. 10.1

Use data from Fig. 10.1 to calculate a value for the density of bone.

(b) A parallel beam of ultrasound has intensity *I*. It is incident at right-angles to a boundary between two media, as shown in Fig. 10.2.

Fig. 10.2

The media have acoustic impedances of Z_1 and Z_2 . The transmitted intensity of the ultrasound beam is $I_{\rm T}$ and the reflected intensity is $I_{\rm R}$.

(i) State the relation between I, I_T and I_R .

(ii) The reflection coefficient α is given by the expression

$$\alpha = \frac{(Z_2 - Z_1)^2}{(Z_2 + Z_1)^2}.$$

Use data from Fig. 10.1 to determine the reflection coefficient $\boldsymbol{\alpha}$ for a boundary between

1. gel and soft tissue,

2. air and soft tissue.

$$\alpha$$
 =[1]

(c) By reference to your answers in (b)(ii), explain the use of a gel on the surface of skin during ultrasound diagnosis.

nformation	main pri n about int	ncipies ernal bod	benina dy struc	the g etures.	enerat	ion o	f ultras	ound	to	obtain	diagn
				M							
									L		

4 (a) Explain the main principles behind the **use** of ultrasound to obtain diagnostic information about internal body structures.

•••••	 	 •••••	
			ΓΑ

(b) Data for the acoustic impedances and absorption (attenuation) coefficients of muscle and bone are given in Fig. 11.1.

	acoustic impedance / kg m ⁻² s ⁻¹	absorption coefficient / m ⁻¹		
muscle	1.7 × 10 ⁶	23		
bone	6.3 × 10 ⁶	130		

Fig. 11.1

The intensity reflection coefficient is given by the expression

$$\frac{(Z_2 - Z_1)^2}{(Z_2 + Z_1)^2}$$

The attenuation of ultrasound in muscle follows a similar relation to the attenuation of X-rays in matter.

A parallel beam of ultrasound of intensity I enters the surface of a layer of muscle of thickness 4.1 cm as shown in Fig. 11.2.

The ultrasound is reflected at a muscle-bone boundary and returns to the surface of the muscle.
Calculate

(i) the intensity reflection coefficient at the muscle-bone boundary,

coefficient =[2]

(ii) the fraction of the incident intensity that is transmitted from the surface of the muscle to the surface of the bone,

(iii) the intensity, in terms of *I*, that is received back at the surface of the muscle.

intensity =
$$I$$
 [2]

5	(a)	State what is meant by acoustic impedance.
	(b)	Explain why acoustic impedance is important when considering reflection of ultrasound at the boundary between two media.
		[2]
	(c)	Explain the principles behind the use of ultrasound to obtain diagnostic information about structures within the body.
		[5]
		CHEMISTRYONIINE