Wave Basics

Mark Scheme 1

Level	International A Level
Subject	Physics
Exam Board	CIE
Topic	Waves
Sub Topic	Wave Basics
Paper Type	Theory
Booklet	Mark Scheme 1

amplitude constant for progressive wave and varies (from max/antinode to min/zero/node) for stationary wave
adjacent particles in phase for stationary wave and out of phase for progressive wave
(b) (i) wave/microwave from source/S reflects at reflector/R reflected and (further) incident waves overlap/meet/superpose
waves have same frequency/wavelength/period and speed (so stationary waves formed)

B1
B1

B1 [2
(iii) determine/measure the distance between adjacent minima/nodes or maxima/antinodes or across specific number of nodes/antinodes
wavelength is twice distance between adjacent nodes/minima or maxima/ antinodes (or other correct method of calculation of wavelength from measurement)
(c) $v=f \lambda$
$f=3.0 \times 10^{8} /\left(2.8 \times 10^{-2}\right)\left[=1.07 \times 10^{10} \mathrm{~Hz}\right]$

2 (a (i) amplitude scale reading 2.2 (cm)
amplitude $=2.2 \times 2.5=5.5 \mathrm{mV}$
[2]

A1 [3]
(iii) uncertainty in reading $= \pm 0.2$ in 3.8 (cm) or 5.3% or 0.2 in 7.6 (cm) or 2.6% [allow other variations of the distance on the x-axis]
actual uncertainty $=5.3 \%$ of $526=27.7$ or 28 Hz
or 2.6% of $526=13$ or 14
(b) frequency $=530 \pm 30 \mathrm{~Hz}$ or $530 \pm 10 \mathrm{~Hz}$

3 (a (i) progressive: energy is moved/transferred/propagated from one place to another (without the bulk movement of the medium)
transverse: (particles) oscillate/vibrate at right angles to the direction of travel of the energy/wavefront
(ii) number of oscillations per unit time/number of wavefronts passing a point per unit time
(b) (i) P and T
(ii) P and S or Q and T
(c) $\lambda=1.2 \times 10^{-2}(\mathrm{~m})$

$$
\begin{aligned}
v & =f \lambda \\
& =15 \times 1.2 \times 10^{-2} \\
& =0.18 \mathrm{~ms}^{-1}
\end{aligned}
$$

(d) ratio $=(1.4)^{2} /(2.1)^{2}$

$$
=0.44
$$ C1

(a (i) displacement is the distance from the
equilibrium position/undisturbed position/midpoint/rest position
(c) (i) progressive wavefront/crests moving/energy is transferred by the waves
(ii) transverse
the vibration is perpendicular to the direction of energy transfer/wave velocity or travel of the wave/ wavefronts

5 (a)d=v×t
$t=0.2 \times 4 \quad$ (allow $t=0.2 \times 2$)
C1
$d=3 \times 10^{8} \times 0.8 \times 10^{-6} \quad$ OR $\quad 3 \times 10^{8} \times 0.4 \times 10^{-6}$
$d=240 \mathrm{~m}$ hence distance from source to reflector $=120 \mathrm{~m}$
C1
A
(b) speed of sound 300 cf speed of light $3 \times 10^{8} \quad$ OR time $=240 / 300(=0.8)$

OR time $=120 / 300(=0.4) \quad$ C1
sound slower by factor of 10^{6}
OR time for one division 0.8 / 4
OR time for one division 0.4 / 2
C1
time base setting $0.2 \mathrm{~s} \mathrm{~cm}^{-1}$

A1
amplitude is the maximum displacement
B1
(ii) frequency is the number of wavefronts/crests passing a point per unit time/ number of oscillations per unit time B1
time period is the time between adjacent wavefronts or time for one oscillation
B1

A1

C
A
C1
A
[2]
(ii) $v=\lambda / T$ or $v=f \lambda$ and $T=1 / f$ $T=4.2 / 7.5=0.56 \mathrm{~s}$
[unit required]

6 (a (i) displacement is the distance the rope / particles are (above or below) from the equilibrium / mean / rest / undisturbed position (not 'distance moved')

B1
(ii) 1. amplitude $(=80 / 4)=20 \mathrm{~mm}$

$$
\text { 2. } \quad \begin{aligned}
v & =f \lambda \text { or } v=\lambda / T \\
f & =1 / T=1 / 0.2 \quad(5 \mathrm{~Hz}) \\
v & =5 \times 1.5=7.5 \mathrm{~ms}^{-1}
\end{aligned}
$$

C1
C1
A1
[1]
(b) point A of rope shown at equilibrium position

B1 same wavelength, shape, peaks / wave moved $1 / 4 \lambda$ to right

B1

[2]

(c) (i) progressive as energy OR peaks OR troughs is/are transferred/moved /propagated (by the waves)

B1
(ii) transverse as particles/rope movement is perpendicular to direction of travel

B1

7 (a (i) 1. wavelength: minimum distance between two points moving in phase OR distance between neighbouring or consecutive peaks or troughs OR wavelength is the distance moved by a wavefront in time T or one oscillation/cycle or period (of source)
2. frequency: number of wavefronts / (unit) time

OR number of oscillations per unit time or oscillations/time
B1
(ii) speed $=\underline{\text { distance }} /$ time $=\underline{\text { wavelength } / \text { time period }} \quad$ M1

$$
\begin{equation*}
=\overline{\lambda / T=\lambda f} \tag{1}
\end{equation*}
$$

A0
(b) (i) amplitude $=4.0 \mathrm{~mm} \quad$ (allo 1 s.f.) \quad A1
(ii) wavelength $=18 / 3.75(=4.8) \quad \mathrm{C} 1$
speed $=2.5 \times 4.8 \times 10^{-2}=12 \times 10^{-2} \mathrm{~m} \mathrm{~s}^{-1}$ unit consistent with numerical answer, e.g. in $\mathrm{cm} \mathrm{s}^{-1}$ if cm used for λ and unit changed on answer line [if $18 \mathrm{~cm}=3.5 \lambda$ used giving speed $13(12.9) \mathrm{cm} \mathrm{s}^{-1}$ allow max. 1].
(iii) 180° or π rad A1
(c) light and screen and correct positions above and below ripple tank B1 strobe or video camera B1

