Wave Basics Mark Scheme 1

Level			Internation	al A Level		
Subject			Physics			
Exam Board	d		CIE			
Торіс			Waves			
Sub Topic			Wave Basic	S		
Paper Type			Theory			
Booklet			Mark Scher	me 1		
Time Allowe	ed:	80 minute	S			
Score:		/66				
Percentage:		/100				
A*	Α	В	С	D	E	U
>85%	'77.5%	70%	62.5%	57.5%	45%	<45%

(a	pro	gressive waves transfer/propagate energy and stationary waves do not	B1					
	amplitude constant for progressive wave and varies (from max/antinode to min/zero/node) for stationary wave							
	adjacent particles in phase for stationary wave and out of phase for progressive wave							
(b)	(i)	wave/microwave from source/S reflects at reflector/R	B1					
		reflected and (further) incident waves overlap/meet/superpose	B1					
		waves have same <u>frequency/wavelength/period</u> and <u>speed</u> (so stationary waves formed)	B1	[3]				
	(ii)	detector/D is moved between reflector/R and source/S (or v.v.)	B1					
		maximum, minimum/zero, (maximum etc.) observed on meter/deflections/readings/measurements/recordings	B1	[2				
	(iii)	determine/measure the distance between adjacent minima/nodes or maxima/antinodes or across <u>specific number</u> of nodes/antinodes	B1					
		wavelength is twice distance between <u>adjacent</u> nodes/minima or maxima/ antinodes (or other correct method of calculation of wavelength from measurement)	B1	[2				
((c)	$v = f\lambda$	С	1				
	$f = 3.0 \times 10^8 / (2.8 \times 10^{-2}) [= 1.07 \times 10^{10} \text{Hz}]$							
	11 (10.7) GHz							

<u>CHEMISTRY ONLINE</u> — TUITION —

1

2	(a (i)	amplitude scale reading 2.2 (cm) amplitude = $2.2 \times 2.5 = 5.5 \text{ mV}$		[2]
	(i	i)	time period scale reading = $3.8 (\text{cm})$ time period = $3.8 \times 0.5 \times 10^{-3} = 0.0019 (\text{s})$		
			frequency $f = 1 / 0.0019 = 530 (526)$ Hz	A1	[3]
	(ii	i)	uncertainty in reading = ± 0.2 in 3.8 (cm) or 5.3% or 0.2 in 7.6 (cm) or 2.6% [allow other variations of the distance on the <i>x</i> -axis]		
			actual uncertainty = 5.3% of 526 = 27.7 or 28 Hz or 2.6% of 526 = 13 or 14	A1	[2]
	(b) f	rec	quency = 530 ± 30 Hz or 530 ± 10 Hz		[1]
3	(a (i	i)	progressive: energy is moved/transferred/propagated from one place to another (without the bulk movement of the medium)	B1	
			transverse: (particles) oscillate/vibrate at right angles to the direction of travel of the energy/wavefront	B1	[2]
	(i	i)	number of oscillations per unit time/number of wavefronts passing a point per unit time	B1	[1]
	(b) (i	i)	P and T	B1	[1]
	(ii	i)	P and S <u>or</u> Q and T	B1	[1]
	(c) λ	=	1.2×10^{-2} (m)	C1	
	V	=	$= 7\lambda$ = $15 \times 1.2 \times 10^{-2}$ = $0.18 \mathrm{m s^{-1}}$	C1 A1	[3]
	(d) ra	atic	$p = (1.4)^2 / (2.1)^2$ = 0.44	C1 A1	[2]

asherrana@chemistryonlinetuition.com

4	(a	(i)	displacement is the distance from the equilibrium position/undisturbed position/midpoint/rest position	B1	
			amplitude is the maximum displacement	B1	[2]
		(ii)	frequency is the number of wavefronts/crests passing a point per unit time/number of oscillations per unit time	B1	
			time period is the time between adjacent wavefronts <i>or</i> time for one oscillation	B1	[2]
	(b)	(i)	1. amplitude = 1.5 mm	A1	[1]
			2. wavelength = $25/6$ = $4.2 \text{ cm} \text{ or } 4.2 \times 10^{-2} \text{ m}$	C A	[2]
		(ii)	$v = \lambda/T$ or $v = f\lambda$ and $T = 1/f$ T = 4.2/7.5 = 0.56 s	C1 A	[2]
	(c)	(i)	progressive wavefront/crests moving/energy is transferred by the waves	A1	[1]
		(ii)	transverse the vibration is perpendicular to the direction of energy transfer/wave velocity or travel of the wave/wavefronts		[1]
5	(a	d = t = 0 d = d =	$v \times t$ 0.2×4 (allow $t = 0.2 \times 2$) $3 \times 10^8 \times 0.8 \times 10^{-6}$ OR $3 \times 10^8 \times 0.4 \times 10^{-6}$ 240 m hence distance from source to reflector = 120 m	C1 C1 C1 A	[4]
	(b)	spe	ed of sound 300 cf speed of light 3×10^8 OR time = 240 / 300 (= 0.8) OR time = 120 / 300 (= 0.4)	C1	
		sou time	The slower by factor of 10° OR time for one division 0.8 / 4 OR time for one division 0.4 / 2 e base setting 0.2 s cm ⁻¹ [unit required]	C1 A1	[3]

6	(a	(i)	displacement is the distance the rope / particles are (above or below) from the equilibrium / mean / rest / undisturbed position (not 'distance moved')			[1]
		(ii)	1.	amplitude (= 80 / 4) = 20 mm		[1]
			2.	$v = f\lambda$ or $v = \lambda / T$ f = 1 / T = 1 / 0.2 (5 Hz) $v = 5 \times 1.5 = 7.5 \text{ m s}^{-1}$	C1 C1 A1	[3]
	(b)	poir san	nt A ne w	of rope shown at equilibrium position vavelength, shape, peaks / wave moved $\frac{1}{4}\lambda$ to right	B1 B1	[2]
	(c)	(i)	pro /pro	gressive as energy OR peaks OR troughs is/are transferred/moved opagated (by the waves)	B1	[1]
		(ii)	traı /pro	nsverse as particles/rope movement is perpendicular to direction of travel opagation of the energy/wave velocity	B1	[1]
7	(a	(i)	1.	wavelength: minimum distance between two points moving in phase OR distance between neighbouring or consecutive peaks or troughs OR wavelength is the distance moved by a wavefront in time T or one oscillation/cycle or period (of source)	B1	[1]
			2.	frequency: number of wavefronts / (unit) time OR number of oscillations per unit time or oscillations/time	B1	[1]
		(ii)	sp	eed = <u>distance</u> / time = <u>wavelength / time period</u> = $\lambda / T = \lambda f$	M1 A0	[1]
	(b)	(i)	am	nplitude = 4.0 mm (allo 1 s.f.)	A1	[1]
		(ii)	wa sp	eed = $2.5 \times 4.8 \times 10^{-2}$ = 12×10^{-2} m s ⁻¹ unit consistent with numerical	C1	
			an [if	swer, e.g. in cm s ⁻¹ if cm used for λ and unit changed on answer line 18 cm = 3.5λ used giving speed 13 (12.9) cm s ⁻¹ allow max. 1].	A1	[2]
		(iii)	18	0° or π rad	A1	[1]
	(c)	ligh stro	nt ar obe	nd screen and correct positions above and below ripple tank or video camera	B1 B1	[2]