Wave Basics Mark Scheme 2

Level	International A Level
Subject	Physics
Exam Board	CIE
Торіс	Waves
Sub Topic	Wave Basics
Paper Type	Theory
Booklet	Mark Scheme 2

Time Allowed:	76 minutes
Score:	/63
Percentage:	/100

CHEMISTRYONLINE

A*	A	В	С	D	E	U
>85%	'77.5%	70%	62.5%	57.5%	45%	<45%

1	(a	when waves overlap / meet the resultant displacement is the sum of the individual displacements of the waves				[2]
	(b)	(i)	1. phase difference	= 180° / (<i>n</i> + ½) 360° (allow in rad)	B1	[1]
			2. phase difference	= 0 / 360 ° / (<i>n</i> 360 °) (allow in rad)	B1	[1]
		(ii)	$v = f\lambda$ $\lambda = 320 / 400 = 0.80$) m	C1 A	[2]
	(iii) path difference = $7 - 5 = 2$ (m) = 2.5λ				M1	
			hence minimum or maximum if phase	e change at P is suggested	A1	[2]
2	(a	trav	el through a vacuum	/ free space	B1	[1]
	(b)	(i)	B : name: C : name: F : name:	microwaveswavelength: 10^{-4} to 10^{-1} multra-violet / UVwavelength: 10^{-7} to 10^{-9} mX -rayswavelength: 10^{-9} to 10^{-12} m	B1 B1 B1	[3]
		(ii)	$f = \frac{3 \times 10^8}{500 \times 10^{-9}}$		C1	
			$f = 6(.0) \times 10^{14} \text{ Hz}$		A1	[2]
	(c)		ations are in one dire pendicular to directior	ction n of propagation / energy transfer	M1	
			ood sketch showing t		A1	[2]

asherrana@chemistryonlinetuition.com

3	(a)	to the longit	verse waves have vibrations that are perpendicular / normal e direction of energy travel udinal waves have vibrations that are parallel e direction of energy travel	B1 B1	[2]
	(b)		ions are in a single direction	M1	[~]
		or or	normal to direction of wave energy travel normal to direction of wave propagation	A1	[2]
	(c)	1	. amplitude = 2.8 cm	B1	[1]
		2	Phase difference = 135° or 0.75π rad or $\frac{3}{4}\pi$ rad or 2.36 radians (three sf needed) numerical value unit	M1 A1	[2]
		(ii) a	mplitude = 3.96 cm (4.0 cm)		[1]
4	. (8	a (i)	amplitude = 7.6 mm allow 7.5 mm	A1	[1]
		(ii)	180° / π <u>rad</u>	A1	[1]
		(iii)	$v = f \times \lambda$ = 15 × 0.8 = 12 m s ⁻¹	C1 A1	
	(1		rect sketch with peak moved to the right ve moved by the correct phase angle / time period of 0.25 T	B1 B1	[2]
	(0	c)	zero (rad)	A1	[1]
		(ii)	antinode maximum amplitude, node zero amplitude / displacement	A1	[1]
	(i	ii) 3		A1	[1]
	(i	v) ho	rizontal line through central section of wave	B1	[1]

·

5	(a) (i)	distance (of point on wave) from rest/,equilibrium position	B1	[1]
	(ii)	distance moved by wave energy <i>I</i> wavefront during one cycle of the source or minimum distance between two points with the same phase or between adjacent crests or troughs	B1	[1]
	(b) (i)	<i>T=</i> 0.60s	B1	[1]
	(ii)	2=4.0cm	B1	[1]
	(iii)	either $v = 2/T$ or $v = f^2$ and $f = 1/T$ v = 6.7 cms ⁻¹	C1 A1	[2]
	(c) (i)	amplitude is decreasing so, it is losing power	M1 A1	[2]
	(ii)	intensity = $(amplitude)^2$ ratio= $2.a^2 / 1.1^2$ = 3.3	C1 C1 A1	[3]

6	(a	(i)	1 number of oscillations per unit time (not per second) 2 $n\lambda$	B1 A1	[1] [1]	
		(ii)	$v = \text{distance} / \text{time} = n\lambda/t$ $n/t = f$ hence $v = f\lambda$ or f oscillations per unit time so $f\lambda$ is distance per unit time distance per unit time is v so $v = f\lambda$	M1 A1 M1 A1	[2]	
	(b)	(i)	1.0 period is 3 × 2 = 6.0 ms frequency = 1/(6 × 10 ⁻³) = 170 Hz	C1	[2]	
		(ii)	wave (with approx. same amplitude and) with correct phase difference	B1	[1]	
	7	(a)	transfer / propagation of energyas a result of oscillations / vibrations			[2]
		(b)	(i) displacement / velocity / acceleration (of particles in the wave)		B1	[1]
			(ii) displacement etc. is normal to direction of energy transfer / travel of wave / propagation of wave(not 'wave motion')		B1	[1]
		((iii) displacement etc. along / same direction of energy transfer / travel of wave / propagation of wave(not 'wave motion')		B1	[1]
		(c)	diffraction: suitable object, means of observation either laser or lamp and aperture		M1	
			or distant source light region where darkness expected			
			interference: suitable object, means of observation and illumination light and dark fringes observed			
			appropriate reference to a dimension for diffraction or for interference		. B1	[6
				[Total:	11]

asherrana@chemistryonlinetuition.com