Wave Basics

Mark Scheme 2

Level	International A Level
Subject	Physics
Exam Board	CIE
Topic	Waves
Sub Topic	Wave Basics
Paper Type	Theory
Booklet	Mark Scheme 2

Time Allowed:	76 minutes						
Score:	/63						
Percentage:	/100						
A	A	B	C	D	E	U	
$>85 \%$	77.5%	70%	62.5%	57.5%	45%	$<45 \%$	

1 (a when waves overlap / meet B1 the resultant displacement is the sum of the individual displacements of the waves B1
(b) (i) 1. phase difference $=180^{\circ} /(n+1 / 2) 360^{\circ}$ (allow in rad)
2. phase difference $=0 / 360^{\circ} /\left(n 360^{\circ}\right)$ (allow in rad)
(ii) $v=f \lambda$

C1
$\lambda=320 / 400=0.80 \mathrm{~m}$
(iii) path difference $=7-5=2(\mathrm{~m})$

$$
=2.5 \lambda
$$

hence minimum or maximum if phase change at P is suggested
A1

2 (a travel through a vacuum / free space
(b) (i) $\mathrm{B}:$ name: microwaves wavelength: 10^{-4} to $10^{-1} \mathrm{~m}$ B1 C : name: ultra-violet / UV wavelength: 10^{-7} to $10^{-9} \mathrm{~m}$ F: name:

X -rays wavelength: 10^{-9} to $10^{-12} \mathrm{~m}$ B1 B1
(ii) $f=\frac{3 \times 10^{8}}{500 \times 10^{-9}}$

C1

$$
f=6(.0) \times 10^{14} \mathrm{~Hz}
$$

(c) vibrations are in one direction M1
perpendicular to direction of propagation / energy transfer or good sketch showing this A1
(a) transverse waves have vibrations that are perpendicular / normal to the direction of energy travel B1longitudinal waves have vibrations that are parallelto the direction of energy travelB1 [2]
(b) vibrations are in a single direction M1either applies to transverse wavesor normal to direction of wave energy travelor normal to direction of wave propagationA1 [2]
(c) 1. amplitude $=2.8 \mathrm{~cm}$B1 [1]
2. phase difference $=135^{\circ}$ or 0.75π rad or $3 / 4 \pi$ rad or 2.36 radians(three sf needed)
numerical value M1
unitA1 [2]
(ii) amplitude $=3.96 \mathrm{~cm}(4.0 \mathrm{~cm})$[1]
(ii) $180^{\circ} / \pi \mathrm{rad}$
(iii) $v=f \times \lambda$

$$
=15 \times 0.8
$$

$$
=12 \mathrm{~ms}^{-1}
$$

(b) correct sketch with peak moved to the right
(c) zero (rad)
(ii) antinode maximum amplitude, node zero amplitude / displacement

5 (a) (i) distance (of point on wave) from rest/ ;equilibrium position
B1 [1]
(ii) distance moved by wave energy I wavefront during one cycle of the source or minimum distance between two points with the same phase or between adjacent crests or troughs
(b) (i) $T=0.60 \mathrm{~s}$
(ii) $2=4.0 \mathrm{~cm}$
(iii) either $v=2 / T$ or $v=f 2$ and $f=1 / T$ $v=6 . ? \mathrm{cms}^{-1}$
(c) (i) amplitude is decreasing so, it is losing power
(ii) intensity $=(\text { amplitude })^{2}$
ratio $=2 . a^{2} / 1.1^{2}$ $=3.3$

B1
B1

C1
A1
[2]

C1
C1
[1]
[1]

A1 [3]
(a (i) 1 number of oscillations per unit time (not per second) B12 n λA1
(ii) $v=$ distance $/$ time $=n \lambda / t$ M1
$n / t=f$ hence $v=f \lambda$ A1
or f oscillations per unit time so $f \lambda$ is distance per unit time M1
distance per unit time is v so $v=f \lambda$ A1
(b) (i) 1.0 period is $3 \times 2=6.0 \mathrm{~ms}$ C1 frequency $=1 /\left(6 \times 10^{-3}\right)=170 \mathrm{~Hz}$[2]
(ii) wave (with approx. same amplitude and) with correct phase difference B1[1]
7 (a) transfer / propagation of energy M1
as a result of oscillations / vibrations A1
(b) (i) displacement / velocity / acceleration (of particles in the wave) B1
(ii) displacement etc. is normal to direction of energy transfer / travel of wave / propagation of wave(not 'wave motion') B1
(iii) displacement etc. along / same direction of energy transfer /
travel of wave / propagation of wave(not 'wave motion') B1
(c) diffraction: suitable object, means of observation M1
either laser or lamp and aperture or distant source M1
light region where darkness expected A1
interference: suitable object, means of observation and illumination B1
light and dark fringes observed B1
appropriate reference to a dimension for diffraction or for interference B1
[1]
[1]
[1]

