Ultrasound Mark Scheme 1

Level	Inte	ernational A Level		
Subject	Phy	vsics		
Exam Board	CIE			
Торіс	Wa	ves		
Sub Topic	Ult	rasound		
Paper Type	The	eory		
Booklet	Ma	rk Scheme 1		
Time Allowed: Score:	53 minutes /44			
Score:	/44			
Score:	/44			
Score:	/44	RY ON	LIN	B U

1 (a)	•	uct of density (of medium) and speed (of ultrasound) ne medium	M1 A1	[2]
(b) (i)	$7.0 \times 10^{6} = 1.7 \times 10^{3} \times \text{speed}$ speed = $4.12 \times 10^{3} \text{ m s}^{-1}$	C1	
		wavelength = $(4.12 \times 10^3)/(9.0 \times 10^5)$ m = 4.6 mm (2 s.f. minimum)	C1 A1	[3]
	(ii)	for air/tissue boundary, $I_R/I \approx 1$ for air/tissue boundary, (almost) complete reflection/no transmission for gel/tissue boundary, $I_R/I = 0.1^2/3.1^2$	M A1	
		$= 1.04 \times 10^{-3} (accept \ 1 \ s.f.)$ gel enables (almost) complete transmission (into the tissue)	M1 A1	[4]
2 (a)	de	duct of density and speed ensity of medium, speed of wave in medium ot "speed of light", 0/2)	M1 A1	[2]
(b)	$\alpha = (6.4 - 1.7)^2 / (6.4 + 1.7)^2$ = 0.34	C1 A1	[2]
	(ii)	$I/I_0 = e^{-\mu x}$ = exp (-23 × 3.4 × 10 ⁻²) = 0.46	C1 C A1	[3]
	(iii)	$I_{\rm R}/I = (0.46)^2 \times 0.34$ = 0.072	C1 A1	[2]

3	(a)	pulse	(of ultrasou	nd) artz / piezo-electri	c crystal	(1)	B1		
		refle refle	ected from be ected pulse c	oundaries (betwee letected		(')	B1 B1		
		sign inter	al processed	d transmitter d and displayed cted pulse gives in information abou	nformation about the b	(1) oundary (1) (1)	B1		
				us any two from ti			B2	[6]	
	(b)		ter wavelen ller structure	-	cted (<i>not more sharpn</i>	ess)	B1 B1	[2]	
	(c)		$I = I_0 e^{-\mu x}$ ratio = exp(- = 0.23	–23 × 6.4 × 10 ^{–2})			C1 C A1	[3]	
					gh greater thickness o reater absorption / sm		M1 A1	[2]	
	4	(a)		ensity and speed medium and) spe	of sound / wave ed of sound / wave in	medium		M1 A1	[2]
		(b)		reflection / transr	flection ated allow 1/2 marks for mission also depends of	on $(Z_1 + Z_2)$	arks)	M1 M1	
			or		on coefficient = $(Z_1 - Z_2)$	$(Z_1 + Z_2)^2 / (Z_1 + Z_2)^2$		A1	[3]
		(c)		r structures can b etter resolution at	e distinguished shorter wavelength / h	higher frequency		B1 B1	[2]

5	quartz/piezo-electric crystal p.d. across crystal causes <i>either</i> centres of (+) and (–) charge to move	B1	
	or crystal to change shape	B1	
	alternating p.d. (in ultrasound frequency range) causes crystal to vibrate	B1	
crystal cut to produce resonance			
	when crystal made to vibrate by ultrasound wave	M1	
	alternating p.d. produced across the crystal	A1	[6]

<u>CHEMISTRY ONLINE</u> — TUITION —