Ultrasound Mark Scheme 2

Level	International A Level
Subject	Physics
Exam Board	CIE
Торіс	Waves
Sub Topic	Ultrasound
Paper Type	Theory
Booklet	Mark Scheme 2

Time Allowed:	51 minutes
Score:	/42
Percentage:	/100

CHEMISTRY ONLINE

A*	A	В	С	D	E	U
>85%	'77.5%	70%	62.5%	57.5%	45%	<45%

1 (a) product of density (of medium) and speed of sound (in the medium)	B1	[1]
(b) α would be nearly equal to 1 <i>either</i> reflected intensity would be nearly equal to incident intensity <i>or</i> coefficient for transmitted intensity = $(1 - \alpha)$ transmitted intensity would be small	M1 M1 A1	[3]
(c) ($\alpha = (1.7 - 1.3)^2 / (1.7 + 1.3)^2$ = 0.018	C1 A1	[2]
(ii) attenuation in fat = $\exp(-48 \times 2x \times 10^{-2})$ $0.012 = 0.018 \exp(-48 \times 2x \times 10^{-2})$ x = 0.42 cm	C1 C1 A1	[3]
2 (a) (i) density × <u>speed of wave</u> (in the medium)	B1	[1]
(ii) $\rho = (7.0 \times 10^6) / 4100$ = 1700 kg m ⁻³	A1	[1]
(b) (i) $I = I_{\rm T} + I_{\rm R}$	B1	[1]
(ii) 1. $\alpha = (0.1 \times 10^6)^2 / (3.1 \times 10^6)^2$ = 0.001	C1 A1	[2]
2. <i>α</i> ≈ 1	A1	[1]
 (c) either very little transmission at an air-skin boundary (almost) complete transmission at a gel-skin boundary when wave travels in or out of the body or no gel, majority reflection with gel, little reflection when wave travels in or out of the body 	M1 A1 (M1) (M1) (A1)	[3]
 <i>a either</i> quartz <i>or</i> piezo-electric crystal opposite faces /two sides coated (with silver) to act as electrodes <i>either</i> molecular structure indicated <i>or</i> centres of (+) and (–) charge not coincident potential difference across crystal causes crystal to change shape alternating voltage (in US frequency range) applied across crystal causes crystal to oscillate / vibrate (crystal cut) so that it vibrates at resonant frequency (max 6) 	E E E E	31 31 31 31 31 31 31 31 [6]

4	(a) <u>pulse</u> of ultrason reflected at bo received / dete signal process time between	(1) (1) (1) (1)		
	(information al reflected inten (any four point	(1) (1) B4	[4]	
	(b) (i) coefficient	$t = (Z_2 - Z_1)^2 / (Z_2 + Z_1)^2$ = (6.3 - 1.7) ² / (6.3 + 1.7) ² = 0.33 (unit quoted, then -1)	C1 A1	[2]
	(ii) fraction	$= \exp(-\mu x)$	C1	
		$= \exp(-23 \times 4.1 \times 10^{-2}) \\= 0.39$	A1	[2]
	(iii) intensity	= $0.33 \times 0.39^2 \times I$ = 0.050 I low e.c.f. from (i) and (ii) if these answers are grea	C1 A1	[2]
	(uo not an	ow e.c.n. nom (i) and (ii) in these answers are grea	ler (nan T)	
5	(a) product of den	sity (of medium) and speed of <u>sound</u> (in medium)	B1	[1]
	determines fra	coustic impedance ction of incident intensity d/amount of reflection		[2]
	reflected at bo (reflected puls time for return	ound (directed into body) undary (between tissues) e is) detected and processed of echo gives (information on) depth ection gives information on tissue structures	B1 B1 B1	[5]