Stationary waves Mark Scheme 1

Level	International A Level
Subject	Physics
Exam Board	CIE
Торіс	Superposition
Sub Topic	Stationary Waves
Paper Type	Theory
Booklet	Mark Scheme 1

Time Allowed:	57 minutes
Score:	/47
Percentage:	/100

CHEMISTRYONLINE

A*	A	В	С	D	E	U
>85%	'77.5%	70%	62.5%	57.5%	45%	<45%

1	(a	diffr	raction is the spreading of a wave as it passes through a slit or past an edge	B1		
		when two (or more) waves superpose/meet/overlap resultant displacement is the sum of the displacement of each wave			[3]	
	(b)	nλ:	= $d \sin \theta$ and $v = f\lambda$	C1		
			max order number for $\theta = 90^{\circ}$ hence $n (= f/vN) = 7.06 \times 10^{14}/(3 \times 10^8 \times 650 \times 10^3)$			
		n =				
		hen	ice number of orders = 3	A1	[3]	
	(c)	gre	ater wavelength so fewer orders seen	A1	[1]	
2	(a	(i)	coherent: constant phase difference	B1		
			interference is the (overlapping of waves and the) sum of/addition of displacement of two waves	B1	[2]	
	(ii) wavelength = 3.2 m (allow ± 0.05 m)		M1			
			$f (= v / \lambda = 240 / 3.2) = 75 \text{Hz}$	A1	[2]	
		(iii)	90° (allow ± 2°) or $\pi/2$ rad	A1	[1]	
		(iv)	sketch has amplitude 3.0 ± 0.1 cm	M1		
			correct displacement values at previous peaks to produce correct shape	A1	[2]	
	(b)	(i)	$\lambda = ax/D$	C1		
			$x = (546 \times 10^{-9} \times 0.85) / 0.13 \times 10^{-3} (= 3.57 \times 10^{-3} \text{ m})$	C1		
			AB = 8.9 (8.93) \times 10 ⁻³ m	A1	[3]	
		(ii)	shorter wavelength for blue light so separation is less	B1	[1]	

3	(a	two waves (of the same kind) travelling in opposite directions overlap	B1	
		waves have same frequency/wavelength and speed	B1	[2]

(b) (i) T = 0.8 (ms)

$$f = 1 / (0.8 \times 10^{-3}) = 1250 (Hz)$$

(ii) microphone is moved from plate to loudspeaker or vice versa wavelength is the twice the distance between adjacent maxima or minima (seen on c.r.o.) B1 [2] (iii) $v = f\lambda$ C1

=
$$1250 \times 0.26$$

= $330 (325) \text{ms}^{-1}$ A1 [2]

4	(a	(i)	progressive wave transfers energy, stationary wave no transfer of energy/ keeps energy within wave	B1	[1]
		(ii)	(progressive) wave/wave from loudspeaker reflects at end of tube reflected wave overlaps (another) progressive wave same frequency and speed hence stationary wave formed	B1 B1 B1	[3]
		(iii)	(side to side) along length of tube/along axis of tube	B1	[1]
	(b)	all t	three nodes clearly marked with N/clearly labelled at cross-over points	B1	[1]
	(c)	pha	ase difference = 0	A1	[1]
	(d)	(i)	$v = f\lambda$ $\lambda = 330/440 = 0.75 \mathrm{m}$	C1 A	[2]
		(ii)	$L = 5/4 \lambda$ = 5/4 × 0.75 = 0.94 m	C1 A1	[2]

[2]

5	(a (i)	$v = f\lambda$	C1	101
		$\lambda = 40 / 50 = 0.8(0) \text{ m}$	A1	[2]
	(ii)	waves (travel along string and) reflect at Q / wall / fixed end	B1	[0]
		incident and reflected waves interfere / superpose	B1	[2]
	(b) (i)	nodes labelled at P, Q and the two points at zero displacement	B1	
	(b) (i)	antinodes labelled at the three points of maximum displacement	B1	[2]
	(ii)	$(1.5\lambda \text{ for PQ hence PQ} = 0.8 \times 1.5) = 1.2 \text{ m}$	А	[1]
			7.	[,]
	(iii)	T = 1 / f = 1/50 = 20 ms 5 ms is ¹ / ₄ of cycle	A1	
		horizontal line through PQ drawn on Fig. 5.2	B1	[3]

CHEMISTRY ONLINE — TUITION —