Stationary waves Mark Scheme 2

Level	International A Level
Subject	Physics
Exam Board	CIE
Topic	Superposition
Sub Topic	Stationary Waves
Paper Type	Theory
Booklet	Mark Scheme 2

1 (a waves (travels along tube) reflect at closed end / end of tube
incident and reflected waves or these two waves are in opposite directions interfere or stationary wave formed if tube length equivalent to $\lambda / 4,3 \lambda / 4$, etc.

A1 [3]
(b) (i) 1. no motion (as node) / zero amplitude

B1
2. vibration backwards and forwards / maximum amplitude along length
(ii) $\lambda=330 / 880(=0.375 \mathrm{~m})$

$$
L=3 \lambda / 4
$$

$L=3 / 4 \times(0.375)=0.28(0.281) m$
A
(b) apparatus: source of sound + detector + reflection system adjustment to apparatus to set up standing waves - how recognised B1 measurements made to obtain wavelength B1
(c) (i) at least two nodes and two antinodes A1
(ii) $\begin{aligned} & \text { node to node }=\lambda / 2=34 \mathrm{~cm} \text { (allow } 33 \text { to } 35 \mathrm{~cm} \text {) } \mathrm{C} 1\end{aligned}$
$c=f \lambda$ C1
$f=340 / 0.68=500 \quad(490$ to 520$) \mathrm{Hz}$ A1
$\begin{array}{ll}\text { (a) two waves travelling (along the same line) in opposite directions overlap/meet } & \text { M1 } \\ \text { same frequency / wavelength } & \text { A1 }\end{array}$ resultant displacement is the sum of displacements of each wave / produces nodes and antinodes
(a) waves overlap B
(resultant) displacement is the sum of the displacements of each of the waves
(b) waves travelling in opposite directions overlap / incident and reflected waves overlap
(allow superpose or interfere for overlap here)
waves have the same speed and frequency
B1
(c) (i) time period $=4 \times 0.1$ (ms)

C1
$f=1 / T=1 / 4 \times 10^{-4}=2500 \mathrm{~Hz}$
(ii) 1. the microphone is at an antinode and goes to a node and then an antinode / maximum amplitude at antinode and minimum amplitude at node
2. $\lambda / 2=6.7$ (cm)

C1
$v=f \lambda$
$v=2500 \times 13.4 \times 10^{-2}=335 \mathrm{~m} \mathrm{~s}^{-1}$
C1
A1
incorrect λ then can only score second mark
4 (a e.g. no energy transfer amplitude varies along its length/nodes and antinodes neighbouring points (in inter-nodal loop) vibrate in phase, etc. (any two, 1 mark each to max 2 B2
(b) $\quad\left(\quad \lambda=\left(330 \times 10^{2}\right) / 550\right.$ M1
$\lambda=60 \mathrm{~cm}$ A0
(ii) node labelled at piston B1
antinode labelled at open end of tube B1
additional node and antinode in correct positions along tube B1
(c) at lowest frequency, length $=\lambda / 4$ C1
$\lambda=1.8 \mathrm{~m}$
frequency = 330/1.8 C1
$=180 \mathrm{~Hz}$ A1A
5 (a) (frequency f B1
[1]
(ii) amplitude A B1
(b) $\pi \mathrm{rad}$ or 180° (unit necessary)B1
(c) (i) speed $=f \times L$ B1
(ii) wave is reflected at end / at P B1
either incident and reflected waves interfere
or two waves travelling in opposite directions interfere M1
speed is the speed of incident or reflected wave / one of these waves A1

