Stationary waves Mark Scheme 3

Level	International A Level	
Subject	Physics	
Exam Board	CIE	
Торіс	Superposition	
Sub Topic	Stationary Waves	
Paper Type	Theory	
Booklet	Mark Scheme 3	

Time Allowed:	57 minutes		
Score:	/47		
Percentage:	/100		

CHEMISTRY ONLINE

A*	Α	В	С	D	E	U
>85%	'77.5%	70%	62.5%	57.5%	45%	<45%

1	(a	(i)	frequency:	number of oscillations <u>per</u> of the source / of a point o	unit time n the wave		M1 A1	[2]
		(ii)	speed:	speed at which energy is t	ransferred / speed of wa	ave <u>front</u>	B1	[1]
	(b)	(i)	does not trai	nsfer energy (along the way	/e)		B1	[1]
		(ii)	position (alo	ng wave) where amplitude	of vibration is a maximu	m	B1	[1]
		(iii)	all three pos	itions marked			B1	[1]
	(c)	wav v = 44.5 m =	relength = 2 = $f\lambda$ = 125 × 0.356 = 44.5 m s ⁻¹ 5 ² = 4.00 / m = 2.0 × 10 ⁻³ k	$\times 17.8 = 35.6 \text{ cm}$ $\frac{1}{1000} \text{ cm}^{-1}$			C1 C1 C1 A1	[5]
2	(a	(i)	vibration <u>s</u> (i	n plane) <u>normal</u> to directior	n of energy propagation		B1	[1]
		(ii)	vibrations in	one direction (normal to di	rection of propagation)		B1	[1]
	(b)	(i)	at (displace maximum ar	ement) antinodes / where mplitude (of vibration)	e there are no heaps	s, wave has	B1	

-	(~	(-)	heradenig (in plane) <u>nerma</u> te anotaten er energy propagation	2.	r.1
		(ii)	vibrations in <u>one</u> direction (normal to direction of propagation)	B1	[1]
	(b)	(i)	at (displacement) antinodes / where there are no heaps, wave has maximum amplitude (of vibration) at (displacement) nodes/where there are heaps, amplitude of vibration is zero/minimum	B1	
			dust is pushed to / settles at (displacement) nodes	B1	[3]
		(ii)	$2.5\lambda = 39 \text{ cm}$ $v = f\lambda$ $v = 2.14 \times 10^3 \times 15.6 \times 10^{-2}$	C1 C1	
			$= 334 \text{ m s}^{-1}$ (allow 330, not 340)	А	[3]
	(c)	Sta	tionary wave formed by interference / superposition / overlap of	R1	
	(0)	eith	her wave travelling down tube and its reflection		
		or	two waves of same (type and) frequency travelling in opposite directions	B1	
		spe	ed is the speed of the incident / reflected waves	B1	[3]

3	(a)	(i) correct shape drawn	B1	[1]
		(ii) two nodes marked correctly	B1	[1]
	(b)	$\frac{1}{2}\lambda = 0.324 \text{ m}$ $v = f\lambda$ $= 512 \times 2 \times 0.324$	C1 C1	
		$= 332 \text{ m s}^{-1}$	A1	[3]
	(c)	$\frac{1}{4}\lambda = 16.2 \text{ cm}$	C1	
		or antinode is 16.2 cm above water surface	A1	[2]
	4	(a) wavelength = 1.50 m	B1 [1]	
	((b) $v = f \lambda$	C1	
		speed = 540 m s ⁻¹	A1 [2]	
		(c) (progressive) wave reflected at the (fixed) ends	B1	
		wave is formed by superposition of (two travelling) waves	B1	
		this quantity is the speed of the travelling wave	B1 [3]	

<u>CHEMISTRY ONLINE</u> — TUITION —

5	(a	pro	gressive waves transfer/propagate energy and stationary waves do not	B1	
		<u>am</u> min	<u>olitude</u> constant for progressive wave and varies (from max/antinode to /zero/node) for stationary wave	B1	
		adja wav	acent particles in phase for stationary wave and out of phase for progressive /e	(B1)	[2]
	(b)	(i)	wave/microwave from source/S reflects at reflector/R	B1	
			reflected and (further) incident waves overlap/meet/superpose	B1	
			waves have same <u>frequency/wavelength/period</u> and <u>speed</u> (so stationary waves formed)	B1	[3]
		(ii)	detector/D is moved between reflector/R and source/S (or v.v.)	B1	
			maximum, minimum/zero, (maximum etc.) observed on meter/deflections/readings/measurements/recordings	B1	[2
		(iii)	determine/measure the distance between adjacent minima/nodes or maxima/antinodes or across <u>specific number</u> of nodes/antinodes	B1	
			wavelength is twice distance between <u>adjacent</u> nodes/minima or maxima/ antinodes (or other correct method of calculation of wavelength from measurement)	B1	[2
(c) v	ν = fλ		C1	
	f	= 3.0	0×10^8 / (2.8 × 10 ⁻²) [= 1.07 × 10 ¹⁰ Hz]	C1	
	1	11 (10.7)GHz			[3]