Diffraction \& Interference Mark Scheme 2

Level	International A Level
Subject	Physics
Exam Board	CIE
Topic	Superposition
Sub Topic	Diffraction \& Interference
Paper Type	Theory
Booklet	Mark Scheme 2

Time Allowed:	66 minutes
Score:	$/ 55$
Percentage:	$/ 100$

A*	A	B	C	D	E	U
$>85 \%$	$' 77.5 \%$	70%	62.5%	57.5%	45%	$<45 \%$

(a (i) to produce coherent sources or constant phase difference B1 [1]
(ii) 1. $360^{\circ} / 2 \pi$ rad allow $n \times 360^{\circ}$ or $n \times 2 \pi$ (unit missing -1) B1 [1]
2. $180^{\circ} / \pi$ rad allow $\left(\mathrm{n} \times 360^{\circ}\right)-180^{\circ}$ or $(\mathrm{n} \times 2 \pi)-\pi$B1 [1]
(iii) 1. waves overlap / meet B1
(resultant) displacement is sum of displacements of each waveB1
2. at P crest on trough (OWTTE) B1
(b) $\lambda=a x / D$
$=2 \times 2.3 \times 10^{-3} \times 0.25 \times 10^{-3} / 1.8$C1

$$
=639 \mathrm{~nm}
$$2 (a when a wave passes through a slit / by an edge

the wave spreads out / changes direction(b) diagram: wavelength unchangedM1wavefront flat at centre, curving into geometrical shadowA1
(b) diagram: wavelength unchanged A1
(c) $d \sin \theta=n \lambda$
for $\theta=90^{\circ}$
$1 /\left(650 \times 10^{3}\right)=n \times 590 \times 10^{-9}$
$n=2.6$
number of orders is 2
(d) intensity / brightness decreases (as order increases)B1
[2][1]

3 (a when two (or more) waves meet (at a point)
B1
(resultant) displacement is (vector) sum of individual displacements
B1
(b) (i) $\lambda=a x / D \quad$ (if no formula given and substitution is incorrect then $0 / 3$)

C1 $590 \times 10^{-9}=\left(1.4 \times 10^{-3} \times x\right) / 2.6$ C1 $x=1.1 \mathrm{~mm}$
(ii) 1. 180° (allow π if rad stated)

A
2. at maximum, amplitude is 3.4 units and at minimum, 0.6 units intensity \sim amplitude ${ }^{2}$ allow $I \sim a^{2}$ ratio $=3.4^{2} / 0.6^{2}$ $=32$

A1

4 (a) when a wave (front) passes by/incident on an edge/slit wave bends/spreads (into the geometrical shadow)
(b) $\tan \theta=\frac{38}{165}$

$d \sin \theta=n \lambda$

(c) P remains in same position B1
X and Y rotate through 90°
B1
(d) either screen not parallel to grating

B1
\qquad
5 (a either phase difference is $\pi \mathrm{rad} / 180^{\circ}$ or path difference (between waves from S_{1} and $\left.S_{2}\right)$ is $1 / 2 \lambda /(n+1 / 2) \lambda$ B1either same amplitude / intensity at Mor ratio of amplitudes is 1.28 / ratio of intensities is 1.28^{2}................... B1
(b) path difference between waves from S_{1} and $S_{2}=28 \mathrm{~cm}$ B1
wavelength changes from 33 cm to 8.25 cm B1
minimum when $\lambda=(56 \mathrm{~cm}) 18.7 \mathrm{~cm},, 11.2 \mathrm{~cm},(8.0 \mathrm{~cm})$ B1
so two minima B1
(a) constant phase difference B1
(b) allow wavelength estimate $750 \mathrm{~nm} \rightarrow 550 \mathrm{~nm}$ C1
separation $=\lambda D / x$ C1
$=\left(650 \times 10^{-9} \times 2.4\right) /\left(0.86 \times 10^{-3}\right)$ $=1.8 \mathrm{~mm}$ A1(allow 2 marks from inappropriate estimate if answer is in range $10 \mathrm{~cm} \rightarrow 0.1 \mathrm{~mm}$)
(c) no longer complete destructive interference / amplitudes no longer completely cancel M1
so dark fringes are lighter A1
7 (a wave incident at an edge / aperture / slit /(edge of) obstacle M1
bending / spreading of wave (into geometrical shadow) A1
(award 0/2 for bending at a boundary)
(award 0/2 for bending at a boundary)

(b) (i) apparatus e.g. laser \& slit / point source \& slit / lamp and slit \& slit

(b) (i) apparatus e.g. laser \& slit / point source \& slit / lamp and slit \& slit microwave source \& slit microwave source \& slit water / ripple tank, source \& barrier water / ripple tank, source \& barrier B1 B1

detector e.g. screen

detector e.g. screen

aerial / microwave probe

aerial / microwave probe strobe / lamp strobe / lamp B1 B1
what is observed
what is observed B1 B1 1 1
(ii) apparatus e.g. loudspeaker, and slit / edge B1
detector e.g. microphone \& c.r.o. / ear B1
what is observed B1
(allow 2 marks from inappropriate estimate if answer is in range $10 \mathrm{~cm} \rightarrow 0.1 \mathrm{~mm}$)wh
[2]

