Diffraction & Interference

Mark Scheme 3

Level	International A Level
Subject	Physics
Exam Board	CIE
Topic	Superposition
Sub Topic	Diffraction & Interference
Paper Type	Theory
Booklet	Mark Scheme 3

Time Allowed: 86 minutes

Score: /71

Percentage: /100

CHEMISTRY ONLINE

A*	Α	В	C	D	E	U
>85%	'77.5%	70%	62.5%	57.5%	45%	<45%

(a amplitude between 6.5 squares and 7.5 squares on 3 peaks B2 1 (allow 1 mark if outside this range but between 6.0 and 8.0 squares) correct phase (ignore lead/lag, look at x-axis only and allow $\pm \frac{1}{2}$ square В1 [3] **(b)** $\lambda = ax / D$ C1 $540 \times 10^{-9} = (0.700 \times 10^{-3} \text{ x}) / 2.75$ C1 x = 2.12 mmΑ1 [3] (c) (i) same separation B1 bright areas brighter (1) dark areas, no change (1) (allow 'contrast greater' for 1 mark if dark/light areas not discussed) fewer fringes observed (1) any two, 1 each B2 [3] (ii) smaller separation of fringes B1 no change in brightness B1 [2] when two (or more) waves meet (at a point) M1 2 **(a)** (i) there is a change in overall intensity / displacement A1 constant phase difference (between waves) (ii) B1 [3] $d\sin\theta = n\lambda$ (b) (i) B1 $(10^{-3} / 550) \sin 90 = n \times 644 \times 10^{-9}$ C1 n = 2.8C1 so two orders Α1 [4] (power-of-ten error giving 2800 orders, allow 1/3 only for calculation of n) (ii) **1.** $d\sin\theta = n\lambda$ (either here or in (i) – not both) θ is greater so λ is greater B1 [1] **2.** when *n* is larger, $\Delta\theta$ is larger M1

so greater in second order

Α1

[2]

- 3 (a) When a wave (front) is incident on an edge or an obstacle/slit/gap M1
 Wave 'bends' into the geometrical shadow/changes direction/spreads A1 [2]
 - **(b) (i)** $d = 1/(750 \times 10^3)$ C1 = 1.33×10^{-6} m A1 [2]
 - (ii) $1.33 \times 10^{-6} \times \sin 90^{\circ} = n \times 590 \times 10^{-9}$ C1 n = 2 (must be an integer) A1 [2]
 - (iii) formula assumes no path difference of light before entering grating <u>or</u>
 there is a path difference before the grating

 B1 [1]
 - e.g. lines further apart in second order lines fainter in second order (allow any sensible difference: 1 each, max 2) B2 [2] (if differences stated but without reference to the orders, max 1 mark)
- When two (or more) waves meet (not 'superpose' or 'interfere') B1 4 (a) resultant displacement M1 is the sum of individual (displacements) Α1 [3] any correct line through points of intersection of crests **B1** (b) any correct line through intersections of a crest and a trough В1 [2] (ii) OR (c) (i) $\lambda = a \sin \theta$ and $\theta = x/D$ $\lambda = ax/D$ C1 $650 \times 10^{-9} = (a \times 0.70 \times 10^{-3})/1.2$ $a = 1.1 \times 10^{-3}$ m C1 Α1 [3] (ii) 1 no change B1 2 brighter

3 no change (accept stay/remain dark)

В1

Total

[3]

[11]

5 (6	a (i)) coherence:	<u>.</u>	M1 A1 [2]	J
	(ii)	•	nce is either λ or $n\lambda$ ference is 360° or $n\times 360^\circ$ or $n2\pi$ rad	B1 [1]]
	(iii)	-	ace is either $\lambda/2$ or $(n+1/2)$ λ lifference is odd multiple of either 180° or π rad	B1 [1]	
	(iv)	$w = \lambda D / a$ $= [630 \times 1]$ $= 2.1 \times 10$	$10^{-9} \times 1.5$] / 0.45×10^{-3}	C1 C1 A [3]	
(t	no	•	paration/fringe width	31 81 31 [3]	
(a)			tion of energyllations / vibrations		
(b)	(displacement	/ velocity / acceleration (of particles in the wave)	B1 [1]	
	(ii)	•	etc. is normal to direction of energy transfer / e / propagation of wave(not 'wave motion')	B1 [1]	
	(iii)	•	etc. along / same direction of energy transfer / e / propagation of wave(not 'wave motion')	B1 [1]	
(c)	eith	er laser or			
			darkness expected		
	ligh	t and dark fring	able object, means of observation and illuminationges observedence to a dimension for diffraction or		
				B1 [6	
			[Total: 11]	

6

7	(a)	(i)	amplitude = 0.4(0) mm	
		(i)	wavelength = 7.5 x 10 ⁻² m (1 sig. fig1 unless already penalised)A1	
		(i)	period = 0.225 ms	
		(i)	$v = f\lambda$ = 4400 x 7.5 x 10 ⁻²	[6]
	(a)	(ii)	reasonable shape, same amplitude and wavelength doubled B1	[1]
	(b)	(i)	1.7(2) μm A1	
		(ii)	d sin2 = $n\lambda$ (double slit formula scores 0/2) 1.72 x 10 ⁻⁶ x sin 2 = 590 x 10 ⁻⁹	
		(iii)	½L = 1.5 tan20.1	[5]