Communication Mark Scheme 1

Level	International A Level
Subject	Physics
Exam Board	CIE
Topic	Communication
Sub Topic	
Paper Type	Theory
Booklet	Mark Scheme 1

1 (a) (i) loudspeaker/doorbell/telephone etc.
B1 [1]
(ii) television set/audio amplifier etc.

B1 [1]
(iii) satellite/satellite dish/mobile phone etc.

B1
(b) e.g. lower attenuation/fewer repeaters
more secure
less prone to noise/interference
physically smaller/less weight
lower cost
greater bandwidth
(any two sensible suggestions, 1 each)
(c) (i) ratio $=25+(62 \times 0.21)$

$$
=38 \mathrm{~dB}
$$

(ii) ratio $/ \mathrm{dB}=10 \lg \left(P_{2} / P_{1}\right)$

$$
38=10 \lg \left(P /\left\{9.2 \times 10^{-6}\right\}\right)
$$

$P=58 \mathrm{~mW}$ or $5.8 \times 10^{-2} \mathrm{~W}$
(allow $1 / 2$ for missing 10 in equation)

2 (a) (i) metal (allow specific example of a metal)
(ii) e.g. provides 'return' for the signal
shields inner core from interference/reduces cross-talk/reduces noise increased security
(any two sensible suggestions, 1 each)
B2
(b) ((gradual) loss of power/intensity/amplitude B1
(ii) $d B$ is a log scale B1
either large (range of) numbers are easier to handle (on a log scale)
or compounding attenuations/amplifications is easier
B1
(c) attenuation $=190 \times 11 \times 10^{-3}=2.09 \mathrm{~dB}$
$-2.09=10 \lg \left(P_{\text {OUT }} / P_{\text {IN }}\right)$
ratio $=0.62$
C A1
3 handset transmits (identification) signal to number of base stations B1
base stations transfers (signal) to cellular exchange B1 (idea of stations needed at least once in first two marking points)
computer at cellular exchange selects base station with strongest signal B1 computer at cellular exchange selects a carrier frequency for mobile phone B1 (idea of computer needed at least once in these two marking points)
4 B1(ii) e.g. connection of TV to aerial, loudspeaker, microphone (if clearly identified)(iii) e.g. a.f. amplifier to loudspeaker, landline for phone

(ii) signal is amplified

(ii) signal is amplified

(ii) signal is amplified M1 M1 M1

frequency is changed
to prevent swamping

frequency is changed
to prevent swamping

frequency is changed
to prevent swamping M1 M1 M1
to prevent swamping of up-link signal by down-link (signal)
to prevent swamping of up-link signal by down-link (signal)
to prevent swamping of up-link signal by down-link (signal) A1 A1 A1
(b) (i) attenuation $/ \mathrm{dB}=10 \lg \left(P_{2} / P_{1}\right)$
$-190=10 \lg \left(P_{2} / 3.1\right)$

$$
P_{2}=3.1 \times 10^{-19} \mathrm{~kW}
$$C1A1 [2]

5 (a) analogue: continuously variable B1
digital: two / distinct levels only or 1 s and 0 s or highs and lows B1
(b) 15 A1
(ii) 1101 A1
(c) greater number of voltage/signal levels B1
smaller step heights in reproduced signal B1
smaller voltage/signal changes can be seen B1
(a) same carrier frequencies can be re-used M1
but not in neighbouring cells/ possible to use more handsets A1
(b) e.g. wavelength is short (M1)so aerial on mobile phone conveniently short
e.g. limited ran (M1)
so low power/less interference between cells (A1)
e.g. large number of channels/greater bandwidth (M1)so more simultaneous callers

7 (a) e.g. noise can be eliminated/waveform can be regenerated extra bits of data can be added to check for errors cheaper/more reliable greater rate of transfer of data (1 each, max 2)
(b) receives bits all at one time
transmits the bits one after another
(c) sampling frequency must be higher than/(at least) twice frequency to be sampled
either higher (range of) frequencies reproduced on the disc
or lower (range of) frequencies on phone
either higher quality (of sound) on disc
or high quality (of sound) not required for phone(A1)(A1)

B1 A1

