## **Communication** Mark Scheme 2

| Level                   | International A Level |
|-------------------------|-----------------------|
| Subject                 | Physics               |
| Exam Board              | CIE                   |
| Торіс                   | Communication         |
| Sub Topic               |                       |
| Paper Type              | Theory                |
| Booklet                 | Mark Scheme 2         |
|                         |                       |
| Time Allowed:<br>Score: | 64 minutes<br>/53     |
|                         |                       |
| Score:                  | /53                   |
| Score:                  | /53                   |

| 1 | (a) redu | ction in power                                                                           | (allow intensity/amplitude)                                                                                                | В              | [1] |
|---|----------|------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------|----------------|-----|
|   | (b)      | attenuation = 2.4 × 30<br>= 72 dB                                                        | 0                                                                                                                          | A1             | [1] |
|   | (ii)     | gain/attenuation/dB =<br>72 = 10 lg( $P_{IN}/P_{OUT}$ )<br>ratio = 1.6 × 10 <sup>7</sup> | = 10 lg( <i>P</i> <sub>2</sub> / <i>P</i> <sub>1</sub> )<br>or –72 = 10 lg(P <sub>OUT</sub> / <i>P</i> <sub>IN</sub> )     | C<br>C<br>A1   | [3] |
|   |          |                                                                                          | e manageable numbers to be used<br>s amplifiers are added, not multipli                                                    | B1             | [1] |
| 2 | (a) (i)  | satellite is in equatoria<br>travelling from west<br>period of 24 hours / 1              | to east                                                                                                                    | B1<br>B1<br>B1 | [3] |
|   | (ii      | or signal is l                                                                           | nal is highly attenuated<br>highly amplified (before transmission) as downlink signal<br>signal swamping the uplink signal | B1<br>B1       | [2] |
|   | 0        |                                                                                          | order of magnitude in both systems<br>norter than via satellite<br>bre is less                                             | B1<br>M1<br>A1 | [3] |



| 3 | (a) left-hand bit underlined                                                                                                                                                                 | B1       | [1]        |
|---|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|------------|
|   | (b) 1010, 1110, 1111, 1010, 1001<br>(5 correct scores 2, 4 correct scores 1)                                                                                                                 | A        | [2]        |
|   | (c) significant changes in detail of <i>V</i> between samplings so frequency too low                                                                                                         | M1<br>A1 | [2]        |
| 4 | <ul> <li>4 (a) e.g. logarithm provides a smaller number gain of amplifiers is series found by addition, (not multiplication) (any sensible suggestion)</li> <li>(b) ( optic fibre</li> </ul> | B<br>B1  | [1]<br>[1] |
|   | (ii) attenuation/dB = $10 \lg(P_2/P_1)$<br>= $10 \lg(\{6.5 \times 10^{-3}\}/\{1.5 \times 10^{-15}\})$<br>= $126$<br>length = $126 / 1.8$<br>= $70 \text{ km}$                                | C<br>A1  | [3]        |

<u>CHEMISTRY ONLINE</u> — TUITION —

| 5 | (a) | (i)           |       | <i>r</i> series of 'highs' and 'lows' <i>or</i> two discrete values<br>n no intermediate values                                                                                                                                 | M1<br>A1 |               | ]   |
|---|-----|---------------|-------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|---------------|-----|
|   |     | (ii)          | e.g   | noise can be eliminated (NOT 'no noise')<br>signal can be regenerated<br>addition of extra data to check for errors<br>larger data carrying capacity<br>cheaper circuits<br>more reliable circuits ( <i>any three, 1 each</i> ) | В        | [3            | ]   |
|   |     | (b)           | ) (i) | 1. amplifier                                                                                                                                                                                                                    |          |               | [1] |
|   |     |               |       | 2. digital-to-analogue converter allow DAC)                                                                                                                                                                                     |          | В             | [1] |
|   |     |               | (ii)  | output of ADC is number of digits all at one time<br>parallel-to-serial sends digits one after another                                                                                                                          |          | B1<br>B1      | [2] |
|   | 6 ( | ( <b>a)</b> ∈ |       | o/little ionospheric reflection<br>arge information carrying capacity<br>(any two sensible suggestions, 1 each)                                                                                                                 |          | B2            | [2] |
|   |     | (b)           |       | ents (very) low power signal received at satellite<br>g swamped by high-power transmitted signal                                                                                                                                |          | M1<br>A1      | [2] |
|   |     | (c)           | atten | $uation/dB = 10  lg(P_2/P_1)$<br>$185 = 10  lg({3.1 \times 10^3}/P)$<br>$P = 9.8 \times 10^{-16}  W$                                                                                                                            |          | C<br>C1<br>A1 | [3] |
|   |     |               |       |                                                                                                                                                                                                                                 |          |               |     |
|   |     |               |       |                                                                                                                                                                                                                                 |          |               |     |

| 7 | (a)                                                                                                                                                                                                            | (i)   | amplitude of the carrier wave varies<br>(in synchrony) with the displacement of the information signal     | M1<br>A1 | [2] |
|---|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|------------------------------------------------------------------------------------------------------------|----------|-----|
|   | <ul> <li>(ii) e.g. more than one radio station can operate in same region/less interference<br/>enables shorter aerial<br/>increased range/less power required/less attenuation<br/>less distortion</li> </ul> |       |                                                                                                            |          |     |
|   |                                                                                                                                                                                                                |       | (any two sensible answers, 1 each)                                                                         | B2       | [2] |
|   | (b)                                                                                                                                                                                                            | (     | frequency = $909 \text{ kHz}$<br>wavelength = $(3.0 \times 10^8) / (909 \times 10^3)$<br>= $330 \text{ m}$ | A1       | [2] |
|   |                                                                                                                                                                                                                | (ii)  | bandwidth = 18 kHz                                                                                         |          | [1] |
|   |                                                                                                                                                                                                                | (iii) | frequency = 9000 Hz                                                                                        |          | [1] |
|   |                                                                                                                                                                                                                |       |                                                                                                            |          |     |
| 8 | (a)                                                                                                                                                                                                            |       | received signal, 28 = 10 lg( <i>P</i> / {0.36 × 10 <sup>-6</sup> })<br>= 2.3 × 10 <sup>-4</sup> W          | C1<br>A1 | [2] |
|   | (b)                                                                                                                                                                                                            | los   | s in fibre = $10 \lg(\{9.8 \times 10^{-3}\} / \{2.27 \times 10^{-4}\})$<br>= $16 dB$                       |          | [2] |
|   | (c)                                                                                                                                                                                                            | atte  | enuation per unit length = 16 / 85<br>= 0.19 dB km <sup>-1</sup>                                           | A1       | [1] |
|   |                                                                                                                                                                                                                |       |                                                                                                            |          |     |