Communication Mark Scheme 3

Level	International A Level
Subject	Physics
Exam Board	CIE
Topic	Communication
Sub Topic	
Paper Type	Theory
Booklet	Mark Scheme 3

1 (a) takes all the simultaneous digits for one number B1 and 'sends' them one after another (along the transmission line) B1
(b) 0111

A1 [1]
(ii) 0110

A1
(c) levels shown

t	0	0.2			0.8	1	
	0	8	7	1		5	8

$\begin{array}{ll}(-1 \text { for each error or omission) } & \text { A2 } \\ \text { correct basic shape of graph i.e. series of steps } & \text { M1 }\end{array}$
with levels staying constant during correct time intervals
(vertical lines in steps do not need to be shown)
(d) increasing number of bits reduces step height
increasing sampling frequency reduces step depth / width M1 reproduction of signal is more exact

2 (a) e.g. noise can be eliminated/filtered/signal can be regenerated extra bits can be added to check for errors multiplexing possible digital circuits are more reliable/cheaper
data can be encrypted for security
any sensible advantages, 1 each, max. 3
(b) (i) 1. higher frequencies can be reproduced
2. smaller changes in loudness/amplitude can be detected

B1
(ii) bit rate $=44.1 \times 10^{3} \times 16$

$$
\text { number }=7.06 \times 10^{6} \times 340
$$

$$
=2.4 \times 10^{8}
$$

[^0](ii) outer of coaxial cable is earthed
outer shields the core from noise/external signals
(b) attenuation per unit length $=1 / \mathrm{L} \times 10 \lg \left(P_{2} / P_{1}\right)$
signal power at receiver $=10^{2.5} \times 3.8 \times 10^{-8}$
$$
=1.2 \times 10^{-5} \mathrm{~W}
$$
attenuation in wire pair $=10 \lg \left(\left\{3.0 \times 10^{-3}\right\} /\left\{1.2 \times 10^{-5}\right\}\right)$
$$
=24 \mathrm{~dB}
$$
attenuation per unit length $=24 / 1.4$
$$
=17 \mathrm{~dB} \mathrm{~km}^{-1}
$$
(other correct methods of calculation are possible)
4 (a) high frequency wave B1
the amplitude or the frequency is varied M1 the variation represents the information signal / in synchrony with (the displacement of) the information signal.
(b) e.g. shorter aerial required longer transmission range / lower transmitter power / less attenuation allows more than one station in a region less distortion (allow any three sensible suggestions, 1 mark each)

5 (a) (i) e.g. linking a (land) telephone to the (local) exchange
(ii) e.g. connecting an aerial to a television
(iii) e.g. linking a ground station to a satellite
(b) attenuation $=10 \lg \left(P_{2} / P_{1}\right)$
total attenuation $=2.1 \times 40(=84 \mathrm{~dB})$
C1
$84=10 \lg \left(\left\{450 \times 10^{-3}\right\} / P\right)$
$P=1.8 \times 10^{-9} \mathrm{~W}$
A
(answer $1.1 \times 10^{8} \mathrm{~W}$ scores 1 mark only)
(ii) maximum attenuation $=10 \lg \left(\left\{450 \times 10^{-3}\right\} /\left\{7.2 \times 10^{-11}\right\}\right)$

$$
\begin{equation*}
=98 \mathrm{~dB} \tag{C1}
\end{equation*}
$$

$$
\begin{aligned}
\text { maximum length } & =98 / 2.1 \\
& =47 \mathrm{~km}
\end{aligned}
$$

6 (a) (i) no interference (between signals) near boundaries (of cells)
B1
(ii) for large area, signal strength would have to be greater and this could be hazardous to health

B1
(b) mobile phone is sending out an (identifying) signal M1 computer/cellular exchange continuously selects cell/base station with strongest signal A1 computer/cellular exchange allocates (carrier) frequency (and slot) A1
(a) (i) loss of (signal) power B1
(ii) unwanted power (on signal) M1that is random(b) for digital, only the 'high' and the 'low' / 1 and 0 are necessaryM1
variation between 'highs' and 'lows' caused by noise not required A1
(c) attenuation $=10 \lg \left(P_{2} / P_{1}\right)$ C1
either $195=10 \lg \left(\left\{2.4 \times 10^{3}\right\} / P\right)$
or $\quad-195=10 \lg \left(P / 2.4 \times 10^{3}\right)$ C1

$$
P=7.6 \times 10^{-17} \mathrm{~W}
$$

$P=7.6 \times 10^{-17} \mathrm{~W}$ A1

[^0]: 3 (a) (i) signal in one wire (pair) is picked up by a neighbouring wire (pair)

