Communication

Mark Scheme 4

Level	International A Level
Subject	Physics
Exam Board	CIE
Topic	Communication
Sub Topic	
Paper Type	Theory
Booklet	Mark Scheme 4

Time Allowed: 63 minutes

Score: /52

Percentage: /100

A*	A	В	С	D	E	U
>85%	'77.5%	70%	62.5%	57.5%	45%	<45%

1 (a) (i) modulator

В1

В

A1

[1]

- (ii) serial-to-parallel converter (accept series-to-parallel converter)
- [1]
- (b) (i) enables one aerial to be used for transmission and receipt of signals
- [1]

(ii) all bits for one number arrive at one time bits are sent out one after another

B1 [2]

2 (a) e.g. large bandwidth/carries more information

low attenuation of signal

low cost

smaller diameter, easier handling, easier storage, less weight

high security/no crosstalk

low noise/no EM interference

(allow any four sensible suggestions, 1 each, max 4)

B4 [4]

(b) (i) infra-red

B1 [1]

(ii) lower attenuation than for visible light

B1 [1]

(c) (i) gain/dB = $10 \lg(P_2/P_1)$ $26 = 10 \lg(P_2/9.3 \times 10^{-6})$ $P_2 = 3.7 \times 10^{-3} \text{ W}$

A1 [2]

С

C1

(ii) power loss along fibre = $30 \times 0.2 = 6.0 \text{ dB}$ either 6 = $10 \lg(P/3.7 \times 10^{-3})$ or 6 dB = $4 \times 3.7 \times 10^{-3}$ or $32 = 10 \lg(P/9.3 \times 10^{-6})$ input power = 1.5×10^{-2} W

A1 [2]

3	(a)	(i)	switch	M1	
			so that one aerial can be used for transmission and reception	A1	[2]
		(ii)	tuning circuit	M1	
			to select (one) carrier frequency (and reject others)	A1	[2]
		(iii)	analogue-to-digital converter/ADC	M1	
		` ,	converts microphone output to a digital signal	A1	[2]
		(iv)	(a.f.) amplifier (not r.f. amplifier)	M1	
		` ,	to increase (power of) signal to drive the loudspeaker	A1	[2]
	(b) e.g	g. short aerial so easy to handle		
			short range so less interference between base stations		
			larger waveband so more carrier frequencies		
		(a	ny two sensible suggestions, 1 each, max 2)	B2	[2]

4 (a) 6	e.g. carrier frequencies can be re-used (without interference) so increased number of handsets can be used e.g. lower power transmitters so less interference e.g. UHF used so must be line-of-sight/short handset aerial (any two sensible suggestions with explanation, max 4)	(M1) (A1) (M1) (A1) (M1) (A1) B4	[4]
(b)	computer at cellular exchange monitors the signal power relayed from several base stations switches call to base station with strongest signal	B1 B1 B1 B1	[4]

5	. , .	nency of carrier wave varies synchrony) with the displacement of the information signal	M1 A1	[2]
	(b) (5.0 V	A1	[1]
	(ii)	640 kHz	A1	[1]
	(iii)	560 kHz	A1	[1]
	(iv)	7000 (condone unit)	Α	[1]
6		acts as 'return' for the signal shields inner core from noise / interference / cross-talk (any two sensible answers, 1 each, max 2) g. greater bandwidth less attenuation (per unit length)	B2	[2]
		less noise / interference (any two sensible answers, 1 each, max 2)	B2	[2]
	att	enuation is $2.4 dB$ enuation = $10 lg(P_1/P_2)$ io = 1.7	C1 C1 A1	[3]

7 (a) (e.g. unreliable communication because ion layers vary in height / density e.g. cannot carry all information required bandwidth too narrow e.g. coverage limited	(M1) (A1) (M1) (A1) (M1)		
	reception poor in hilly areas (any two sensible suggestions, M1 & A1 for each, max 4)	(A1))		[4]
(b)	signal must be amplified (greatly) before transmission ba uplink signal would be swamped by downlink signal	ick to Earth	B1 B1	[2]

