Communication

Mark Scheme 5

Level	International A Level
Subject	Physics
-	
Exam Board	CIE
Topic	Communication
ТОРІС	Communication
Sub Topic	
Paper Type	Theory
Booklet	Mark Scheme 5

Time Allowed: 60 minutes

Score: /50

Percentage: /100

CHEMISTRY ONLINE

A*	А	В	С	D	Е	U
>85%	'77.5%	70%	62.5%	57.5%	45%	<45%

```
C1
1 (a) (i) ratio / dB = 10 \lg(P_1 / P_2)
                24 = 10 \lg(P_1 / \{5.6 \times 10^{-19}\})
                                                                                                                  C<sub>1</sub>
                P_1 = 1.4 \times 10^{-16} \text{W}
                                                                                                                  Α1
                                                                                                                              [3]
          (ii) attenuation per unit length = 1 / L \times 10 \lg(P_1 / P_2)
                                                                                                                  C<sub>1</sub>
                1.9 = 1 / L \times 10 \log((3.5 \times 10^{-3})/(1.4 \times 10^{-16}))
                                                                                                                  C1
                L = 1 \,\mathrm{km}
                                                                                                                  Α1
                                                                                                                              [3]
                or
                attenuation = 10 \log((3.5 \times 10^{-3})/(5.6 \times 10^{-19}))
                                                                                          (C1)
                               = 158 \, dB
                attenuation along fibre = (158 - 24)
                                                                                          (C1)
                L = (158 - 24) / 1.9 = 71 \text{ km}
                                                                                          (A1)
     (b) less attenuation (per unit length) / longer uninterrupted length of fibre
                                                                                                                   B1
                                                                                                                              [1]
  2 (a) (i) unwanted random power / signal / energy
                                                                                                                         B1
                                                                                                                                [1]
            (ii) loss of (signal) power / energy
                                                                                                                         B1
                                                                                                                                [1]
       (b) (i) either signal-to-noise ratio at mic.
                                                                 = 10 \lg (P_2 / P_1)
                                                                                                                         С
                                                                 = 10 \log (\{2.9 \times 10^{-6}\} / \{3.4 \times 10^{-9}\})
                                                                 = 29 \, dB
                                                                                                                         A1
                            maximum length
                                                   = (29 - 24) / 12
                                                                                                                         C1
                                                    = 0.42 \, \text{km} = 420 \, \text{m}
                                                                                                                         Α1
                                                                                                                                [4]
                            signal-to-noise ratio at receiver = 10 lg (P_2 / P_1)
                                                                                                                   (C1)
                  or
                            at receiver, 24 = 10 \lg(P / \{3.4 \times 10^{-9}\})
                                            P = 8.54 \times 10^{-7} \text{ W}
                                                                                                                   (A1)
                            power loss in cables = 10 \lg(\{2.9 \times 10^{-6}\} / \{8.54 \times 10^{-7}\})
                                                                                                                   (C1)
                                                        = 5.3 \, dB
                            length = 5.3 / 12 km
                                     = 440 \, \text{m}
                                                                                                                   (A1)
              (ii) use an amplifier
                                                                                                                          M1
                    coupled to the microphone
                                                                                                                          Α1
                                                                                                                                  [2]
```

(repeater amplifiers scores no mark)

3	(a) (satellite receive signal amplified at a different (d different frequent e.g. of frequent	(1) (1) B1 B1 (1)			
				any two other for additional physics)	B2	[4]
	(b)	Ç	e.g.	much shorter time delay because orbits are much lower whole Earth may be covered in several orbits / with network	M1 A1 (M1) (A1)	
		disadvantage:	e.g.	either must be tracked or limited use in any one orbit more satellites required for continuous ope	M1 eration A1	[4]

4 (a)	(a)	(i)	 signal has same variation (with time) as the data consists of (a series of) 'highs' and 'lows' either analogue is continuously variable (between limits) 			
			or digital has no intermediate values	B1	[3]	
		(ii)	e.g. can be regenerated / noise can be eliminated extra data can be added to check / correct transmitted signal			
			(any two reasonable suggestions, 1 each)	B2	[2]	
	(b)	(i)	analogue signal is sampled at (regular time) intervals sampled signal is converted into a binary number	B1 B1	[2]	
		(ii)	one channel is required for each bit (of the digital number)	B1	[1]	

5 **(a)** frequency of <u>carrier</u> wave <u>varies</u> (in synchrony) with signal (in synchrony) with displacement of signal

M1 Α1 [2]

(b) advantages e.g. less noise / less interference greater bandwidth / better quality

(1 each, max 2)

disadvantages e.g. short range / more transmitters / line of sight

more complex circuitry

greater expense

(1 each, max 2)

B4 [4]

(a) $gain / loss/dB = 10 lg(P_1/P_2)$ 190 = 10 lg(18 × 10³ / P_2) or $-190 = 10 \lg P_2 / 18 \times 10^3$) power = $1.8 \times 10^{-15} \text{ W}$

C1

C1

Α1

B1

(b) 11 GHz / 12 GHz

[3]

[1]

(ii) e.g. so that input signal to satellite will not be 'swamped' to avoid interference of uplink with / by downlink

B1 [1]

(a) signal becomes distorted / noisy signal loses power / energy / intensity / is attenuated

- B1 **B1** [2]
- (b) (i) either numbers involved are smaller / more manageable / cover wider range calculations involve addition & subtraction rather than multiplication and division **B1** [1]
 - (ii) 25 = $10 \lg(P_{\min} / (6.1 \times 10^{-19}))$ minimum signal power = $1.93 \times 10^{-16} \text{ W}$

C₁

signal loss = $10 \lg(6.5 \times 10^{-3})/(1.93 \times 10^{-16})$ $= 135 \, dB$

C₁

maximum cable length = 135 / 1.6

C1

A1 [5]

= 85 km so no repeaters necessary