Point Charges & Electric Potential

Question paper 2

Level	International A Level
Subject	Physics
Exam Board	CIE
Topic	Electric Fields
Sub Topic	Point Charges & Electric Potential
Paper Type	Theory
Booklet	Question paper 2

Time Allowed: 64 minutes

Score: /53

Percentage: /100

A*	А	В	С	D	E	U
>85%	'77.5%	70%	62.5%	57.5%	45%	<45%

1 A helium nucleus contains two protons.

> In a model of the helium nucleus, each proton is considered to be a charged point mass. The separation of these point masses is assumed to be 2.0×10^{-15} m.

- (a) For the two protons in this model, calculate
 - (i) the electrostatic force,

		electrosta	atic force =	 N [2]
i)	the gravitational fo	orce.		

(ii

2 An α -particle and a proton are at rest a distance 20 m apart in a vacuum, as illustrated in Fig. 4.1.

Fig. 4.1

(a)	(i)	State Coulomb's law.
		[2]

(ii) The α -particle and the proton may be considered to be point charges. Calculate the electric force between the α -particle and the proton.

			force =	N [2]
(b)	(i)	Define electric field strength.		
				[0]

(ii) A point P is distance x from the α -particle along the line joining the α -particle to the proton (see Fig. 4.1). The variation with distance x of the electric field strength E_{α} due to the α -particle alone is shown in Fig. 4.2.

Fig. 4.2

The variation with distance x of the electric field strength $E_{\rm P}$ due to the proton alone is also shown in Fig. 4.2.

1.	Explain why the two separate electric fields have opposite signs.
	[2]

2. On Fig. 4.2, sketch the variation with x of the combined electric field due to the α -particle and the proton for values of x from $4 \mu m$ to $16 \mu m$. [3]

3 (a) Define *electric potential* at a point.

(b) Two point charges A and B are separated by a distance of 20 nm in a vacuum, as illustrated in Fig. 3.1.

Fig. 3.1

A point P is a distance x from A along the line AB. The variation with distance x of the electric potential $V_{\rm A}$ due to charge A alone is shown in Fig. 3.2.

Fig. 3.2

The variation with distance x of the electric potential $V_{\rm B}$ due to charge B alone is also shown in Fig. 3.2.

(i)	State and explain whether the charges A and B are of the same, or opposite, sign.
(ii)	By reference to Fig. 3.2, state how the combined electric potential due to both charges may be determined.
(iii)	Without any calculation, use Fig. 3.2 to estimate the distance x at which the combined electric potential of the two charges is a minimum. $x = \dots nm$ [1]
(iv)	The point P is a distance $x = 10 \text{nm}$ from A. An α -particle has kinetic energy E_{K} when at infinity.
	Use Fig. 3.2 to determine the minimum value of $E_{\rm K}$ such that the α -particle may travel from infinity to point P.
	<u>CHEMISTRY</u> _{E_K =}

4	(a)	Define <i>electric potential</i> at a point.					
		[2]					

(b) A charged particle is accelerated from rest in a vacuum through a potential difference V. Show that the final speed v of the particle is given by the expression

$$V = \sqrt{\left(\frac{2Vq}{m}\right)}$$

where $\frac{q}{m}$ is the ratio of the charge to the mass (the specific charge) of the particle.

[2]

(c) A particle with specific charge $+9.58 \times 10^7 \, \text{C} \, \text{kg}^{-1}$ is moving in a vacuum towards a fixed metal sphere, as illustrated in Fig. 4.1.

2.5 × 10⁵ m s⁻¹

particle

specific charge
+9.58 × 10⁷ C kg⁻¹

Fig. 4.1

The initial speed of the particle is $2.5 \times 10^5 \, \text{m} \, \text{s}^{-1}$ when it is a long distance from the sphere.

The sphere is positively charged and has a potential of +470 V.

Use the expression in **(b)** to determine whether the particle will reach the surface of the sphere.

5	(a)	An insulated metal sphere of radius R is situated in a vacuum. The charge q on the
		sphere may be considered to be a point charge at the centre of the sphere.

(i)	State a formula, in terms of R and q , for the potential V on the surface of the sphere.

(ii) Define capacitance and hence show that the capacitance C of the sphere is given by the expression

$$C = 4\pi \varepsilon_0 R$$
.

[1]

(b) An isolated metal sphere has radius 45 cm.

(i) Use the expression in (a)(ii) to calculate the capacitance, in picofarad, of the sphere.

(ii) The sphere is charged to a potential of $9.0 \times 10^5 \text{V}$. A spark occurs, partially discharging the sphere so that its potential is reduced to $3.6 \times 10^5 \text{V}$.

Determine the energy of the spark.

6	(a)	State what is meant by a line of force in
O	(a)	State what is intentil by a line of force in

	(i)	a gravitation	al field,					
								[1]
	(ii)	an electric fie						
						 		[2]
(b)	Stat	narged metal te one similar ctric force field	rity and o	ne differen he sphere.	ce betwe		nal force fi	eld and the
	simi	ilarity:						
	diffe	erence:						

(c) Two horizontal metal plates are separated by a distance of 1.8 cm in a vacuum. A potential difference of 270 V is maintained between the plates, as shown in Fig. 3.1.

A proton is in the space between the plates.

Explain quantitatively why, when predicting the motion of the proton between the plates, the gravitational field is not taken into consideration.

[3]