Uniform Electric Fields Mark Scheme 1

Level	International A Level
Subject	Physics
Exam Board	CIE
Торіс	Electric Fields
Sub Topic	Uniform Electric Fields
Paper Type	Theory
Booklet	Mark Scheme 1

Time Allowed:	58 minutes
Score:	/48
Percentage:	/100

CHEMISTRYONLINE

A*	Α	В	С	D	E	U
>85%	'77.5%	70%	62.5%	57.5%	45%	<45%

1	(a an	egion/space/area where a (stationary) charge experiences an (electric) force	B1	[1]
	(b) (i)	at least four parallel equally spaced straight lines perpendicular to plates	B1	
		consistent direction of an arrow on line(s) from left to right	B1	[2]
	(ii)	electric field strength $E = V/d$	C1	
		$E = (450/16 \times 10^{-3})$ = 28 × 10 ³ (28 125) V m ⁻¹	A1	[2]
	(iii)	W = Eqd or Vq	C1	
		$q = 3.2 \times 10^{-19}$ (C)		
		$W = 28125 \times 3.2 \times 10^{-19} \times 16 \times 10^{-3} \text{ or } 450 \times 3.2 \times 10^{-19}$		
		$= 1.4(4) \times 10^{-16} $ J	A1	[3]
	(iv)	ratio = $\frac{450 \times 3.2 \times 10^{-19}}{450 \times -1.6 \times 10^{-19}}$ (evidence of working required)		
		= (-) 2	A1	[1]
				·
2	(a ele	ctric field strength is force per unit positive charge	B1	[1]
	(b) ma	ss = volume × density (any subject, allow usual symbols or defined symbols)	C1	
		= $4/3 \times \pi \times (1.2 \times 10^{-6})^3 \times 930$ (= 6.73×10^{-15})		
	we	ight = $4/3 \times \pi \times (1.2 \times 10^{-6})^3 \times 930 \times 9.81 = 6.6 \times 10^{-14} \text{ N}$	M1	[2
	(c) (i)	$E = 1.9 \times 10^{3} / 14 \times 10^{-3}$ = 1.4 (1.36) × 10 ⁵ V m ⁻¹	C1 A1	[2]
	(ii)	F = QE		
		Q = $6.6 \times 10^{-14} / 1.36 \times 10^{5}$ = 4.9 (4.86) × 10^{-19} C [allow 4.7 × 10^{-19} C if 1.4 × 10^{5} used]	C1 A1	[2]
	(iii)	<u>electric</u> force increases/is greater (than weight) charge (on S) is negative to give resultant/net/sum/total force up	B1 B1	[2]

3	(a) cor	(i) the direction of the fields is the same OR fields are uniform OR istant electric field strength OR $E = VI d$ with symbols explained	81	[1]
	(ii)	reduce p.d. across <u>plates</u> increase separation <u>of plates</u>	81 81	[2]
	(iii)	a opposite charge to 13(as deflection in opposite direction)	81	
		a all have same velocity OR energy (as constant deflection) a are more massive (as deflection is less for greater field strength)	81 81	[3]
(b)	W: Y=	=234 and X =90 4 and Z = 2	81 81	[2]
(c)	A=	32 and $B = 16$ and $C = 0$ and $D = -1$	81	[1]

4	(a) (i)	six vertical lines from plate to plate equally spaced across plates [only allow if greatest to least spacing is < 1.3, condone slight curving on the two edges. There must be no area between the plates where an additional line(s) could be added 1	B1	
		arrow downwards on at least one line	B1	[2]
	(ii)	E = V / d = 1200 / 40 × 10 ⁻³ = 3.0 × 10 ⁴ V m ⁻¹ (allow 1 s.f.)	C1 A1	[2]
	(b) (i)	$F = Ee = 3 \times 10^4 \times 1.6 \times 10^{-19} = 4.8 \times 10^{-15} \text{ N}$	C1 A1	[2]
	(ii)	couple = $F \times$ separation of charges = $4.8 \times 10^{-15} \times 15 \times 10^{-3} = 7.2 \times 10^{-17}$ unit: N m or unit consistent with unit used for the separation	C1 A1 B1	[3]
	(iii)	A at top/next to +ve plate B at bottom/next to –ve plate vertically aligned [could be shown on the diagram]	M1	
		forces are equal and opposite in same line / no resultant force and no resultant torque	A1	[2]

(b) (i) $E = V/d$ $= 1200 / 14 \times 10^{-3}$ $= 8.57 \times 10^{4} V m^{-1}$ (ii) $W = QV$ or $W = F \times d$ and therefore $W = E \times Q \times d$ $= 3.2 \times 10^{-19} \times 1200$ $= 3.84 \times 10^{-16} J$ (i) $\Delta U = mgh$ $= 6.6 \times 10^{-27} \times 9.8 \times 14 \times 10^{-3}$ $= 9.06 \times 10^{-28} J$ (c) $AK = 3.84 \times 10^{-16} - \Delta U$ $= 3.84 \times 10^{-16} J$ (i) $\Delta K = 3.84 \times 10^{-16} - \Delta U$ $= 3.84 \times 10^{-16} J$ (j) $AK = 1/2mv^2$ $v = [(2 \times 3.8 \times 10^{-16}) / 6.6 \times 10^{-27}]^{1/2}$ $= 3.4 \times 10^5 m s^{-1}$ (j) $AK = 10^{-16} M M L^{-16}$	(a)	eleo cha	electric field strength is the force <u>per unit positive</u> charge (acting on a stationary charge)		
(ii) $W = QV$ or $W = F \times d$ and therefore $W = E \times Q \times d$ $= 3.2 \times 10^{-19} \times 1200$ $= 3.84 \times 10^{-16} J$ A1 [(iii) $\Delta U = mgh$ $= 6.6 \times 10^{-27} \times 9.8 \times 14 \times 10^{-3}$ $= 9.06 \times 10^{-28} J$ A [(iv) $\Delta K = 3.84 \times 10^{-16} - \Delta U$ $= 3.84 \times 10^{-16} J$ A1 [(v) $K = \frac{1}{2}mv^2$ $v = [(2 \times 3.8 \times 10^{-16}) / 6.6 \times 10^{-27}]^{1/2}$ $= 3.4 \times 10^5 \text{ ms}^{-1}$ A1 [(b)	(i)	E = V / d = 1200 / 14 × 10 ⁻³ = 8.57 × 10 ⁴ V m ⁻¹	C1 A1	[2]
(iii) $\Delta U = mgh$ $= 6.6 \times 10^{-27} \times 9.8 \times 14 \times 10^{-3}$ $= 9.06 \times 10^{-28} J$ (iv) $\Delta K = 3.84 \times 10^{-16} - \Delta U$ $= 3.84 \times 10^{-16} J$ (v) $K = \frac{1}{2}mv^2$ $v = [(2 \times 3.8 \times 10^{-16}) / 6.6 \times 10^{-27}]^{1/2}$ $= 3.4 \times 10^5 \text{ m s}^{-1}$ C1 C1 A1 [(ii)	$W = QV$ or $W = F \times d$ and therefore $W = E \times Q \times d$ = 3.2 × 10 ⁻¹⁹ × 1200 = 3.84 × 10 ⁻¹⁶ J	C1 A1	[2]
(iv) $\Delta K = 3.84 \times 10^{-16} - \Delta U$ = 3.84×10^{-16} J A1 [(v) $K = \frac{1}{2}mv^2$ C1 $v = [(2 \times 3.8 \times 10^{-16}) / 6.6 \times 10^{-27}]^{1/2}$ = 3.4×10^5 m s ⁻¹ A1 [(iii)	$\Delta U = mgh$ = 6.6 × 10 ⁻²⁷ × 9.8 × 14 × 10 ⁻³ = 9.06 × 10 ⁻²⁸ J	C1 A	[2]
(v) $K = \frac{1}{2}mv^2$ $v = [(2 \times 3.8 \times 10^{-16}) / 6.6 \times 10^{-27}]^{1/2}$ $= 3.4 \times 10^5 \mathrm{m s^{-1}}$ C1 A1		(iv)	$\Delta K = 3.84 \times 10^{-16} - \Delta U$ = 3.84 × 10^{-16} J	A1	[1]
$= 3.4 \times 10^5 \mathrm{ms^{-1}}$ A1 [(v)	$K = \frac{1}{2}mv^{2}$ v = [(2 × 3.8 × 10 ⁻¹⁶) / 6.6 × 10 ⁻²⁷] ^{1/2}	C1	
			$= 3.4 \times 10^5 \mathrm{m s^{-1}}$	A1	[2]

5