Uniform Electric Fields Mark Scheme 1

Level	International A Level
Subject	Physics
Exam Board	CIE
Topic	Electric Fields
Sub Topic	Uniform Electric Fields
Paper Type	Theory
Booklet	Mark Scheme 1

Time Allowed:	58 minutes				
Score:	/48				
Percentage:	/100				
A* A	B	C	D	E	U
>85\% '77.5\%	70\%	62.5\%	57.5\%	45\%	<45\%

(b) (i) at least four parallel equally spaced straight lines perpendicular to plates

B1
consistent direction of an arrow on line(s) from left to right
B1
(ii) electric field strength $E=V / d$

$$
\begin{aligned}
E & =\left(450 / 16 \times 10^{-3}\right) \\
& =28 \times 10^{3}(28125) \vee \mathrm{m}^{-1}
\end{aligned}
$$

A1
(iii) $W=E q d$ or $V q$

$$
\begin{aligned}
q & =3.2 \times 10^{-19}(\mathrm{C}) \\
W & =28125 \times 3.2 \times 10^{-19} \times 16 \times 10^{-3} \text { or } 450 \times 3.2 \times 10^{-19} \\
& =1.4(4) \times 10^{-16} \mathrm{~J}
\end{aligned}
$$

(iv) ratio $=\frac{450 \times 3.2 \times 10^{-19}}{450 \times-1.6 \times 10^{-19}}$ (evidence of working required)

$$
=(-) 2
$$

A1
C1

A1

A1

2 (a electric field strength is force per unit positive charge
(b) mass $=$ volume \times density (any subject, allow usual symbols or defined symbols)

$$
=4 / 3 \times \pi \times\left(1.2 \times 10^{-6}\right)^{3} \times 930\left(=6.73 \times 10^{-15}\right)
$$

weight $=4 / 3 \times \pi \times\left(1.2 \times 10^{-6}\right)^{3} \times 930 \times 9.81=6.6 \times 10^{-14} \mathrm{~N}$
(c) (i) $E=1.9 \times 10^{3} / 14 \times 10^{-3}$

$$
=1.4(1.36) \times 10^{5} \mathrm{Vm}^{-1}
$$

(ii) $F=Q E$

$$
\begin{aligned}
Q & =6.6 \times 10^{-14} / 1.36 \times 10^{5} \\
& =4.9(4.86) \times 10^{-19} \mathrm{C} \text { [allow } 4.7 \times 10^{-19} \mathrm{C} \text { if } 1.4 \times 10^{5} \text { used] }
\end{aligned}
$$

(iii) electric force increases/is greater (than weight) charge (on S) is negative to give resultant/net/sum/total force up

B1
B1
C1
A1
3 (a) (i) the direction of the fields is the same OR fields are uniform OR constant electric field strength OR $E=$ VIdwith symbols explained 81
(ii) reduce p.d. across plates 81
increase separation of plates 81
(iii) a opposite charge to 13 (as deflection in opposite direction) 81
13 has a range of velocities OR energies (as different deflections) anda all have same velocity OR energy (as constant deflection)81
a are more massive (as deflection is less for greater field strength) 81
(b) $W=234$ and $X=90$ 81
$Y=4$ and $Z=2$ 81
(c) $A=32$ and $B=16$ and $\mathrm{C}=0$ and $D=-1$ 81
(a) (i) six vertical lines from plate to plate equally spaced across plates
[only allow if greatest to least spacing is < 1.3, condone slight curving on the two edges. There must be no area between the plates where an additional line(s) could be added.]
arrow downwards on at least one line B1
(ii) $E=V / d$

C1
$=1200 / 40 \times 10^{-3}=3.0 \times 10^{4} \mathrm{Vm}^{-1}$ (allow 1 s.f.)
A1
(b) (i) $F=E e$

C1
$=3 \times 10^{4} \times 1.6 \times 10^{-19}=4.8 \times 10^{-15} \mathrm{~N}$
(ii) couple $=F \times$ separation of charges

$$
=4.8 \times 10^{-15} \times 15 \times 10^{-3}=7.2 \times 10^{-17}
$$

A1
unit: N m or unit consistent with unit used for the separation B1
(iii) A at top/next to +ve plate B at bottom/next to -ve plate vertically aligned
M1

M1 [could be shown on the diagram]
forces are equal and opposite in same line / no resultant force and no resultant torque
A1
(a) electric field strength is the force per unit positive charge (acting on a stationary charge)
(b) (i) $E=V / d$

C1
A1
(ii) $W=Q V$ or $W=F \times d$ and therefore $W=E \times Q \times d$ C1
$=3.2 \times 10^{-19} \times 1200$
$=3.84 \times 10^{-16} \mathrm{~J}$ A1
(iii) $\Delta U=m g h$

C1
$=6.6 \times 10^{-27} \times 9.8 \times 14 \times 10^{-3}$
$=9.06 \times 10^{-28} \mathrm{~J}$
(iv) $\Delta K=3.84 \times 10^{-16}-\Delta U$
$=3.84 \times 10^{-16} \mathrm{~J}$
A1
(v) $\begin{aligned} & K=1 / 2 m v^{2} \\ & v=\left[\left(2 \times 3.8 \times 10^{-16}\right) / 6.6 \times 10^{-27}\right]^{1 / 2} \\ & =3.4 \times 10^{5} \mathrm{~ms}^{-1}\end{aligned}$

C1
(v) $\begin{aligned} & K=1 / 2 m v^{2} \\ & v=\left[\left(2 \times 3.8 \times 10^{-16}\right) / 6.6 \times 10^{-27}\right]^{1 / 2} \\ & =3.4 \times 10^{5} \mathrm{~ms}^{-1}\end{aligned}$
$=3.4 \times 10^{5} \mathrm{~m} \mathrm{~s}^{-1}$
$=1200 / 14 \times 10^{-3}$
$=8.57 \times 10^{4} \mathrm{Vm}^{-1}$
(iv) $=3.84 \times 10^{-16} \mathrm{~J}-\Delta U$

