Uniform Electric Fields

Mark Scheme 3

Level	International A Level		
Subject	Physics		
Exam Board	CIE		
Topic	Electric Fields		
Sub Topic	Uniform Electric Fields		
Paper Type	Theory		
Booklet	Mark Scheme 3		

Time Allowed: 68 minutes

Score: /56

Percentage: /100

CHEMISTRY ONLINE

A*	Α	В	С	D	E	U
>85%	'77.5%	70%	62.5%	57.5%	45%	<45%

- (a (i) either force = $e \times (V/d)$ or E = V/d C1 = $1.6 \times 10^{-19} \times (250/7.6 \times 10^{-3})$ C1 = 5.3×10^{-15} N A1 [3]
 - (ii) either $\Delta E_{\rm K} = {\rm eV}$ or $\Delta E_{\rm K} = Fd$ C1 = $1.6 \times 10^{-19} \times 250$ = $5.3 \times 10^{-15} \times 7.6 \times 10^{-3}$ M1 = 4.0×10^{-17} J A0 [2]

(allow full credit for correct working via calculation of a and v)

- (iii) either $\Delta E_{\rm K} = \frac{1}{2}mv^2$ $4.0 \times 10^{-17} = \frac{1}{2} \times 9.1 \times 10^{-31} \times v^2$ C1 $v = 9.4 \times 10^6 \, {\rm m \ s^{-1}}$ A1 [2] or $v^2 = 2as \, {\rm and} \, a = F/m$ $v^2 = (2 \times 5.3 \times 10^{-15} \times 7.6 \times 10^{-3})/(9.11 \times 10^{-31})$ (C1) $v = 9.4 \times 10^6 \, {\rm m \ s^{-1}}$ (A1)
- (b) speed depends on (electric) potential difference M2 (If states ΔE_K does not depend on uniformity of field, then award 1 mark, treated as an M mark) so speed always the same A1 [3]

- 2 (a force per unit positive charge (on a small test charge) B1 [1]
 - **(b)** field strength = $(210/\{1.5 \times 10^{-2}\}) = 1.4 \times 10^{4} \text{ N C}^{-1}$ A1 [1]
 - (c) (i) acceleration = Eq / m C1 = $(1.4 \times 10^4 \times 1.6 \times 10^{-19}) / (9.1 \times 10^{-31})$ C1 = 2.5×10^{15} m s⁻² (2.46×10^{15}) A1 towards positive plate / upwards (and normal to plate) B1 [4]
 - (ii) time = 2.4×10^{-9} s A1 [1]
 - (d) either vertical displacement after acceleration for 2.4×10^{-9} s = $\frac{1}{2} \times 2.46 \times 10^{15} \times (2.4 \times 10^{-9})^2$ C1 = 7.1×10^{-3} m A1 (0.71 cm < 0.75 cm and) so will pass between plates i.e. valid conclusion based on a numerical val
 - or $0.75 \times 10^{-2} = \frac{1}{2} \times 2.46 \times 10^{15} \times t^2$ (C1) t is time to travel 'half-way across' plates = 2.47×10^{-9} s (A1) (2.4 ns < 2.47 ns) so will pass between plates (A1) i.e. valid conclusion based on a numerical value

- force must be upwards (on positive charge)

 so plate Y is positive

 M1

 A1 [2]
 - (b) (i) E = V/d C1 = $630/(0.75 \times 10^{-2})$ = $8.4 \times 10^4 \text{ N C}^{-1}$ A1 [2]
 - (ii) qE = mg C1 $q = (9.6 \times 10^{-15} \times 9.8) / (8.4 \times 10^4)$ C1 $= 1.12 \times 10^{-18}$ C A1 [3]

4	(a) (i)	lines normal to plate and equal spacing (at least 4 lines)	B1	
		direction from (+) to earthed plate	B1	[2]

(ii)
$$E = 160/0.08$$
 M1
= $2.0 \times 10^3 \text{ V m}^{-1}$ A0 [1]

(ii) force =
$$Eq$$
 C1
= $2.0 \times 10^3 \times 1.2 \times 10^{-15}$
= 2.4×10^{-12} N A1 [2]

(iii) couple = force
$$\times$$
 perpendicular separation M1
= $2.4 \times 10^{-12} \times 2.5 \times 10^{-3} \times \sin 35^{\circ}$
= $3.4(4) \times 10^{-15}$ N m A1 [2]

(ii) Ek =
$$\frac{1}{2}mv^2$$

 $7.2 \times 10^{-17} = \frac{1}{2} \times 9.1 \times 10^{-31} \times v^2$... C1
 $v = 1.26 \times 10^7 \text{ m s}^{-1}$... A1 [4]

6	(a) (i)	arrow in upward direction, foot near P	B1	
	(ii)	curved path consistent with (i) between plates		[3]
	(b)	E = VId = 400 $l (0.8 \times 10^{-2})$	Cl	
		$= 5.0 \times 10^{4} \text{ V m}^{-1} \text{(allow 1 sig fig)} \dots$	Al	[2]
	(c) (i)	F = Eq = 5.0 x 10 ⁴ x 1.6 x 10-1 ⁹	Cl -,	
		= 8.0 x 10 ⁻¹⁵ N (allow 1 sig fig and e.c.f.)	Al	
	(H)	a = F l m = (8Q x 10l ⁵) / (9.1 x 10- ³¹)	Cl	
		= 8.8. x 10^{15} m s ⁻² (allow 1 sig fig and e.c.f.)	Al	[4]
	(d)	because FE is normal to <u>horizontal</u> motion		[2]