Point Charges \& Electric Potential

Mark Scheme 1

Level	International A Level
Subject	Physics
Exam Board	CIE
Topic	Electric Fields
Sub Topic	Point Charges \& Electric Potential
Paper Type	Theory
Booklet	Mark Scheme 1

Time Allowed:	56 minutes				
Score:	/46				
Percentage:	/100				
A* A	B	C	D	E	U
>85\% '77.5\%	70\%	62.5\%	57.5\%	45\%	<45\%

1 (a) (magnitude of electric field strength is the potential gradient
use of gradient at $x=4.0 \mathrm{~cm}$
gradient $=4.5 \times 10^{4} \mathrm{NC}^{-1}\left(\right.$ allow $\left.\pm 0.3 \times 10^{4}\right)$
or

$$
\begin{equation*}
V=\frac{Q}{4 \pi \varepsilon_{0} x} \text { and } E=\frac{Q}{4 \pi \varepsilon_{0} x^{2}} \text { leading to } E=\frac{V}{x} \tag{B1}
\end{equation*}
$$

$$
\begin{align*}
E & =1.8 \times 10^{3} / 0.04 \tag{3}\\
& =4.5 \times 10^{4} \mathrm{Nc}^{-1}
\end{align*}
$$

$$
\begin{equation*}
=4.5 \times 10^{4} \mathrm{NC}^{-1} \tag{A1}
\end{equation*}
$$

(a) work done bringing/moving per unit positive charge from infinity (to the point)
(b) (i) slope/gradient (of the line/graph/tangent)
(allow $d V / d x$, but not $\Delta V / \Delta x$ or V / x)
(allow potential gradient)
(negative sign not required)
(ii) maximum at surface of sphere A or at $x=0(\mathrm{~cm})$
zero at $x=6(\mathrm{~cm})$
then increases but in opposite direction
(any mention of attraction max. 2/3)
(c) (i) M shown between $x=5.5 \mathrm{~cm}$ and $x=6.5 \mathrm{~cm}$
(ii) 1. $\Delta V=(570-230)=340 \mathrm{~V}$ (allow 330 V to 340 V)
2. $q(\Delta) V=1 / 2 m v^{2}$ or change/loss in $\mathrm{PE}=$ change/gain in KE or $\Delta E_{\mathrm{K}}=\Delta E_{\mathrm{P}}$

$$
\begin{array}{ll}
4.8 \times 10^{7} \times 340=1 / 2 v^{2} & \text { C1 } \\
v^{2}=3.26 \times 10^{10} & \\
\left.v=1.8 \times 10^{5} \mathrm{~m} \mathrm{~s}^{-1} \text { (not } 1 \text { s.f. }\right) & \text { A1 }
\end{array}
$$

A1

B1
B1
B1

A1 B1

3 (a work done in moving unit positive charge
from infinity (to the point)
(b) (inside the sphere, the potential would be constant
$\begin{array}{lr}\text { (ii) for point charge, } V x \text { is constant } & \mathrm{B} 1\end{array}$
co-ordinates clear and determines two values of $V x$ at least 4 cm apart conclusion made clear
(c) $q=4 \pi \varepsilon_{0} V x$

$$
q=4 \pi \times 8.85 \times 10^{-12} \times 180 \times 1.0 \times 10^{-2}
$$

$$
=2.0 \times 10^{-10} \mathrm{C}
$$

4
$\begin{array}{lr}\text { (a) work done/energy in moving unit positive charge } & \text { M1 } \\ \text { from infinity (to the point) } & \text { A1 }\end{array}$ from infinity (to the point)
(b) $\left(\quad V=q / 4 \pi \varepsilon_{0} r\right.$
at $16 \mathrm{kV}, q=3.0 \times 10^{-8} \mathrm{C}$
$r=\left(3.0 \times 10^{-8}\right) /\left(4 \pi \times 8.85 \times 10^{-12} \times 16 \times 10^{3}\right)$
$=1.69 \times 10^{-2} \mathrm{~m}$ (allow 2 s.f.)
(allow any answer which rounds to 1.7×10^{-2})
(ii) $\begin{array}{rlrl}\text { energy is } / \text { represented by area 'below' line } & & \mathrm{C} 1 \\ \text { energy } & =1 / 2 \mathrm{~V} \\ & =1 / 2 \times 24 \times 10^{3} \times 4.5 \times 10^{-8} & \mathrm{C} 1 \\ & =5.4 \times 10^{-4} & \end{array}$

$$
=5.4 \times 10^{-4} \mathrm{~J}
$$

(c) $V=q / 4 \pi \varepsilon_{0} r$ and $E=q / 4 \pi \varepsilon_{0} r^{2}$ giving $E r=V \quad$ B1
$2.0 \times 10^{6} \times 1.7 \times 10^{-2}=V \quad \mathrm{C} 1$
$V=3.4 \times 10^{4} \mathrm{~V}$ A M1

A

C1
A1
[3]

[1]

[2]

5 (a) graph: straight line at constant potential $=V_{0}$ from $x=0$ to $x=r$
B1
curve with decreasing gradient
passing through $\left(2 r, 0.50 V_{0}\right)$ and $\left(4 r, 0.25 V_{0}\right)$
(b) graph: straight line at $E=0$ from $x=0$ to $x=r$
curve with decreasing gradient from (r, E_{0}) passing through ($2 r, 1 / 4 E_{0}$) (for 3rd mark line must be drawn to $x=4 r$ and must not touch x-axis)

6 (a discrete and equal amounts (of charge)
B1 [1]
allow: discrete amounts of $1.6 \times 10^{-19} \mathrm{C} /$ elementary charge/e
integral multiples of $1.6 \times 10^{-19} \mathrm{C} /$ elementary charge/e
(b) weight $=q V / d$
$4.8 \times 10^{-14}=(q \times 680) /\left(7.0 \times 10^{-3}\right)$
$q=4.9 \times 10^{-19} \mathrm{C}$
C
A1

MO
(c) elementary charge $=1.6 \times 10^{-19} \mathrm{C}$ (allow $1.6 \times 10^{-19} \mathrm{C}$ to $1.7 \times 10^{-19} \mathrm{C}$)
either the values are (approximately) multiples of this or it is a common factor C1 it is the highest common factor

A1

