Point Charges & Electric Potential

Mark Scheme 1

Level	International A Level
Subject	Physics
Exam Board	CIE
Торіс	Electric Fields
Sub Topic	Point Charges & Electric Potential
Paper Type	Theory
Booklet	Mark Scheme 1

Time Allowed: Score: Percentage:		56 minutes /46 /100	TRY JITI	ON ON		E
A*	А	В	С	D	E	U
>85%	'77.5%	70%	62.5%	57.5%	45%	<45%

1	(a)	use	(magnitude of electric field strength is the potential gradient use of gradient at $x = 4.0$ cm		
		gradient = $4.5 \times 10^4 \text{N}\text{C}^{-1}$ (allow ± 0.3×10^4)			
		or			
		V =	$V = \frac{Q}{4\pi\varepsilon_0 x} \text{ and } E = \frac{Q}{4\pi\varepsilon_0 x^2} \text{ leading to } E = \frac{V}{x}$ $E = 1.8 \times 10^3 / 0.04$ $= 4.5 \times 10^4 \text{ NC}^{-1}$		
	(b) (i)	3.6	$\times 10^{3}$ V	А	[1]
	(ii)	cap	sapacitance = Q/V	C1	
			= $(8.0 \times 10^{-9})/(3.6 \times 10^{3})$ = 2.2×10^{-12} F	A1	[2]
	2 (a		rk done bringing/moving per unit positive charge m infinity (to the point)	M1 A1	[2]
	(t	o) (i)	slope/gradient (of the line/graph/tangent) (allow dV/dx, but not ΔV/Δx or V/x) (allow potential gradient) (negative sign not required)	B1	[1]
		(ii)	maximum at surface of sphere A or at $x = 0$ (cm) zero at $x = 6$ (cm) then increases but in opposite direction (any mention of attraction max. 2/3)	B1 B1 B1	<mark>[</mark> 3]
	(0	c) (i)	M shown between $x = 5.5$ cm and $x = 6.5$ cm	B1	[1]
		(ii)	1. ΔV = (570 – 230) = 340 V (allow 330 V to 340 V)	A1	[1]
			2. $q(\Delta)V = \frac{1}{2}mv^2$ or change/loss in PE = change/gain in KE or $\Delta E_{\rm K} = \Delta E_{\rm P}$	B1	
			$4.8 \times 10^7 \times 340 = \frac{1}{2}v^2$	C1	
			$v^2 = 3.26 \times 10^{10}$ $v = 1.8 \times 10^5 \mathrm{m s^{-1}}$ (not 1 s.f.)	A1	[3]

3	(a	work done in moving unit positive charge from infinity (to the point)		
	(b)	(inside the sphere, the potential would be constant		
		 (ii) for point charge, Vx is constant co-ordinates clear and determines two values of Vx at least 4 cm apart conclusion made clear 		
	(c)	$q = 4\pi \varepsilon_0 Vx$ $q = 4\pi \times 8.85 \times 10^{-12} \times 180 \times 1.0 \times 10^{-2}$ $= 2.0 \times 10^{-10} C$	M1 A	[2]
4	(a)	work done/energy in moving unit positive charge from infinity (to the point)	M1 A1	[2]
	(b)	($V = q/4\pi\epsilon_0 r$ at 16 kV, $q = 3.0 \times 10^{-8}$ C		
	$r = (3.0 \times 10^{-8}) / (4\pi \times 8.85 \times 10^{-12} \times 16 \times 10^{3})$ = 1.69 × 10 ⁻² m (allow 2 s.f.) (allow any answer which rounds to 1.7 × 10 ⁻²)			[2]
		(ii) energy is/represented by area 'below' line energy = $\frac{1}{2}qV$	C1	
		$= \frac{1}{2} \times 24 \times 10^{3} \times 4.5 \times 10^{-8}$ = 5.4 × 10 ⁻⁴ J	C1 A	[3]
	(c)	$V = q/4\pi\epsilon_0 r$ and $E = q/4\pi\epsilon_0 r^2$ giving $Er = V$ 2.0 × 10 ⁶ × 1.7 × 10 ⁻² = V $V = 3.4 \times 10^4 V$	B1 C1 A	[3]

5	(a)	graph: straight line at constant potential = V_0 from $x = 0$ to $x = r$ curve with decreasing gradient passing through (2 <i>r</i> , 0.50 V_0) and (4 <i>r</i> , 0.25 V_0)]
	(b)	graph: straight line at $E = 0$ from $x = 0$ to $x = r$ curve with decreasing gradient from (r, E_0) passing through $(2r, \frac{1}{4}E_0)$ (for 3rd mark line must be drawn to $x = 4r$ and must not touch x-axis)	B1 M1 A1	[3]]
	6	(a discrete and equal amounts (of charge) allow: discrete amounts of 1.6×10^{-19} C/elementary charge/e integral multiples of 1.6×10^{-19} C/elementary charge/e		B1	[1]
		(b) weight = qV/d $4.8 \times 10^{-14} = (q \times 680)/(7.0 \times 10^{-3})$ $q = 4.9 \times 10^{-19} \text{ C}$		C A1	[2]
		(c) elementary charge = 1.6×10^{-19} C (allow 1.6×10^{-19} C to 1.7×10^{-19} C) either the values are (approximately) multiples of this or it is a common factor it is the highest common factor		M0 C1 A1	[2]

<u>CHEMISTRY ONLINE</u> — TUITION —