Point Charges & Electric Potential

Mark Scheme 2

Level	International A Level
Subject	Physics
Exam Board	CIE
Торіс	Electric Fields
Sub Topic	Point Charges & Electric Potential
Paper Type	Theory
Booklet	Mark Scheme 2

Time Allowe	d:	64 minutes	64 minutes								
Score:		/53	/53								
Percentage:		/100									
A*	А	В	С	D	E	U					
>85%	'77.5%	70%	62.5%	57.5%	45%	<45%					

	1	(a)	(i)	$F_{\rm E} = Q_1 Q_2 / 4\pi \varepsilon_0 r^2$ = 8.99 × 10 ⁹ × (1.6 × 10 ⁻¹⁹) ² / (2.0 × 10 ⁻¹⁵) ²	C1	
				= 58 N	A1	[2]
			(ii)	$F_{\rm G} = \frac{Gm_1m_2}{r^2}$ = 6.67 × 10 ⁻¹¹ × (1.67 × 10 ⁻²⁷) ² /(2.0 × 10 ⁻¹⁵) ²	C1	
				$= 4.7 \times 10^{-35} \text{ N}$	A1	[2]
		(b)	(i)	force of repulsion (much) greater than force of attraction	B1	
				must be some other force of <u>attraction</u> to hold nucleus together	M1 A1	[3]
				to hold huceus together	AI	[3]
				(Do not allow if $F_G > F_E$ in (a) or one of the forces not calculated in (a))		
			(ii)	outside nucleus there is repulsion between protons	B1	
			1. 50	either attractive force must act only in nucleus	_	
				or if not short range, all nuclei would stick together	B1	[2]
2	(a	(i) fo	prce proportional to product of (two) charges and inversely		
2	•	•	pi	roportional to square of separation	M1	
			re	eference to point charges	A1	[2]
		/ii) F	= 2 × $(1.6 \times 10^{-19})^2$ / {4 π × 8.85 × 10 ⁻¹² × (20 × 10 ⁻⁶) ² }	С	
		(II)	, '	$= 1.15 \times 10^{-18} \text{ N}$	A1	[2]
			fa		N 4 4	
	(b) (i		orce per unit charge n <i>either</i> a stationary charge	M1	
				r a positive charge	A1	[2]
		(ii)	electric field is a vector quantity electric fields are in opposite directions		
				charges repel		
				Any two of the above, 1 each	B2	[2]
			2.	. graph: line always between given lines	M1	
			٤.	crosses x-axis between 11.0 μ m and 12.3 μ m	A1	
				reasonable shape for curve	A1	[3]

3	(a	 work done bringing unit positive charge from infinity (to the point) 								M1 A1	[2]
	(b)	(either or	 either both potentials are positive/same sign so same sign or gradients are positive & negative (so fields in opposite directions) so same sign 						M1 A1 (M1) (A1)	[2]
		(ii)	the inc	the individual potentials are summed							[1]
		(iii)	allow v	alue of x	between	10 nm and 1	3nm				[1]
		(iv)	V = 0.4 energy	/ = 2 × 1	allow 0.42 ⊡.6 × 10 ⁻¹⁹ ≪ 10 ⁻¹⁹ J	V → 0.44V) × 0.43				M1 A1 A1	[3]
4	(a			moving u v (to the p	nit positive point)	e charge				M1 A1	[2]
	(b)	(gain in) kinetic energy = change in potential energy $\frac{1}{2}mv^2 = qV$ leading to $v = (2Vq/m)^{\frac{1}{2}}$						B1 B1	[2]		
	(c)	eithe	V	= 330 V		9.58 × 10 ⁷ ′ and so 'no'				C1 M1 A1	[3]
		or	V =	= 3.0 × 10		10 ⁷) 5 × 10 ⁵ m s ^{−1}	and so 'no	<u>) N</u>		(C1) (M1) (A1)	
		or	(q/	<i>'m</i>) = 6.6	= 2 × 470 × 10 ⁷ C kg than 9.58 ×		and so 'no'			(C1) (M1) (A1)	

5	(a	(i)	$V = q / 4\pi \varepsilon_0 R$	B1	[1]			
		(ii)	(capacitance is) ratio of charge and potential or q/V $C = q/V = 4\pi\epsilon_0 R$	M1 A0	[1]			
	(b))	$C = 4\pi \times 8.85 \times 10^{-12} \times 0.45$ = 50 pF	C1 A1	[2]			
		(ii)	either energy = $\frac{1}{2} CV^2$ or energy = $\frac{1}{2} QV$ and $Q = CV$ energy of spark = $\frac{1}{2} \times 50 \times 10^{-12} \{(9.0 \times 10^5)^2 - (3.6 \times 10^5)^2\}$ = 17 J	C1 C A1	[3]			
6	(a	(i)	(tangent to line gives) direction of force on a (small test) mass	B1	[1]			
		(ii)	(tangent to line gives) direction of force on a (small test) charge charge is positive	M1 A1	[2]			
	(b)) similarity: e.g. radial fiel lines normal to surface greater separation of lines with increased distance from sphere field strength $\propto 1 / (distance to centre of sphere)^2$ (<i>allow any sensible answer</i>)						
		diffe e.g. elec awa e.g. elec (<i>allc</i>	B1 (B1) (B1)	[3]				
	(c)	elec	vitational force = $1.67 \times 10^{-27} \times 9.81$ = 1.6×10^{-26} N tric force = $1.6 \times 10^{-19} \times 270 / (1.8 \times 10^{-2})$ = 2.4×10^{-15} N tric force very much greater than gravitational force	A C A B1	[4]			