Point Charges \& Electric Potential

Mark Scheme 2

Level	International A Level
Subject	Physics
Exam Board	CIE
Topic	Electric Fields
Sub Topic	Point Charges \& Electric Potential
Paper Type	Theory
Booklet	Mark Scheme 2

1 (a) (i) $F_{E}=Q_{1} Q_{2} / 4 \pi \varepsilon_{0} r^{2}$
(ii) $F_{G}=G m_{1} m_{2} / r^{2}$

$$
\begin{aligned}
& =6.67 \times 10^{-11} \times\left(1.67 \times 10^{-27}\right)^{2} /\left(2.0 \times 10^{-15}\right)^{2} \\
& =4.7 \times 10^{-35} \mathrm{~N}
\end{aligned}
$$

(b) (i) force of repulsion (much) greater than force of attraction must be some other force of attraction to hold nucleus together
(Do not allow if $F_{G}>F_{E}$ in (a) or one of the forces not calculated in (a))
(ii) outside nucleus there is repulsion between protons either attractive force must act only in nucleus or if not short range, all nuclei would stick together

2 (a (i) force proportional to product of (two) charges and inversely proportional to square of separation
(ii) $F=2 \times\left(1.6 \times 10^{-19}\right)^{2} /\left\{4 \pi \times 8.85 \times 10^{-12} \times\left(20 \times 10^{-6}\right)^{2}\right\}$

$$
=1.15 \times 10^{-18} \mathrm{~N}
$$

(b) (i) force per unit charge on either a stationary charge or a positive charge C A1
(ii) electric field is a vector quantity electric fields are in opposite directions charges repel

$$
\text { Any two of the above, } 1 \text { each B2 }
$$

2. graph: line always between given lines M1
crosses x-axis between $11.0 \mu \mathrm{~m}$ and $12.3 \mu \mathrm{~m} \quad$ A1
reasonable shape for curve
[2]
C1
A1
B1M1 A1 ora positive charge
3 (a work done bringing unit positive charge M1from infinity (to the point)
(b) (either both potentials are positive/same sign
so same sign
or gradients are positive \& negative (so fields in opposite directions) so same sign
(ii) the individual potentials are summed
(iii) allow value of x between 10 nm and 13 nm
(iv) $V=0.43 \mathrm{~V}$ (allow $0.42 \mathrm{~V} \rightarrow 0.44 \mathrm{~V}$)
4 (a work done moving unit positive charge
(b) (gain in) kinetic energy $=$ change in potential energy
B1
$1 / 2 m v^{2}=q V$ leading to $v=(2 \mathrm{Vq} / \mathrm{m})^{1 / 2}$
(c) either $\left(2.5 \times 10^{5}\right)^{2}=2 \times V \times 9.58 \times 10^{7}$
C1
$V=330 \mathrm{~V}$
M1
this is less than 470 V and so 'no' A1
$v=\left(2 \times 470 \times 9.58 \times 10^{7}\right)$
or

$$
\begin{equation*}
v=3.0 \times 10^{5} \mathrm{~m} \mathrm{~s}^{-1} \tag{C1}
\end{equation*}
$$

this is greater than $2.5 \times 10^{5} \mathrm{~m} \mathrm{~s}^{-1}$ and so ' no '
or $\quad\left(2.5 \times 10^{5}\right)^{2}=2 \times 470 \times(q / m)$
$(q / m)=6.6 \times 10^{7} \mathrm{Ckg}^{-1}$
this is less than $9.58 \times 10^{7} \mathrm{Ckg}^{-1}$ and so 'no'

5 (a (i) $V=q / 4 \pi \varepsilon_{0} R$
(ii) (capacitance is) ratio of charge and potential or q / V M1

$$
C=q / V=4 \pi \varepsilon_{0} R
$$

(b) $\quad C=4 \pi \times 8.85 \times 10^{-12} \times 0.45$

$$
=50 \mathrm{pF}
$$

(ii) either energy $=1 / 2 C V^{2}$ or energy $=1 / 2 Q V$ and $Q=C V$

$$
\text { energy of spark }=1 / 2 \times 50 \times 10^{-12}\left\{\left(9.0 \times 10^{5}\right)^{2}-\left(3.6 \times 10^{5}\right)^{2}\right\}
$$

$$
=17 \mathrm{~J}
$$

[3]

6 (a (i) (tangent to line gives) direction of force on a (small test) mass
B1
(ii) (tangent to line gives) direction of force on a (small test) charge M1 charge is positive
(b) similarity:
e.g. radial fiel
lines normal to surface
greater separation of lines with increased distance from sphere
field strength $\propto 1 /$ (distance to centre of sphere) ${ }^{2}$
(allow any sensible answer)
B1
difference:
e.g. gravitational force (always) towards sphe
electric force direction depends on sign of charge on sphere / towards or away from sphere
e.g. gravitational field/force is attracti
electric field/force is attractive or repulsive
(allow any sensible comparison)
(c) gravitational force $=1.67 \times 10^{-27} \times 9.81$

	$=1.6 \times 10^{-26} \mathrm{~N}$	A
electric force $=1.6 \times 10^{-19} \times 270 /\left(1.8 \times 10^{-2}\right)$	C	
	$=2.4 \times 10^{-15} \mathrm{~N}$	A
electric force very much greater than gravitational force	B1	

A C A B1

