Point Charges & Electric Potential

Mark Scheme 3

Level	International A Level
Subject	Physics
Exam Board	CIE
Торіс	Electric Fields
Sub Topic	Point Charges & Electric Potential
Paper Type	Theory
Booklet	Mark Scheme 3

Time Allowe	d:	59 minutes				
Score: Percentage:		/49 /100				
A*	A	В	С	D	E	U
>85%	'77.5%	70%	62.5%	57.5%	45%	<45%

1	(a)	forc	e per unit positive charge acting on a stationary charge	B1	[1]
	(b)	(i)	$E = Q / 4\pi\epsilon_0 r^2$ $Q = 1.8 \times 10^4 \times 10^2 \times 4\pi \times 8.85 \times 10^{-12} \times (25 \times 10^{-2})^2$ $Q = 1.25 \times 10^{-5} \text{C} = 12.5 \mu\text{C}$	C1 M1 A0	[2]
		(ii)	$V = Q / 4\pi\epsilon_0 r$ = (1.25 × 10 ⁻⁵) / (4\pi × 8.85 × 10 ⁻¹² × 25 × 10 ⁻²) = 4.5 × 10 ⁵ V (Do not allow use of V = Er unless explained)	C1 A1	[2]
2	(a)	(i)	as <i>r</i> decreases, energy decreases/work got out (due to) <u>attraction</u> so point mass is negatively charged	M1 A1	[2]
		(ii)	electric potential energy = charge × electric potentialIelectric field strength is potential gradientIfield strength = gradient of potential energy graph/chargeI	31 31 40	[2]
	(b)	tang gra (<i>for</i> field	gent drawn at (4.0, 14.5) dient = 3.6×10^{-24} $x < \pm 0.3$ allow 2 marks, for $< \pm 0.6$ allow 1 mark) d strength = $(3.6 \times 10^{-24}) / (1.6 \times 10^{-19})$	31 A2	
		(on	= 2.3×10^{-5} V m ⁻¹ (allow ecf from gradient value) e point solution for gradient leading to 2.3×10^{-5} Vm ⁻¹ scores 1 mark only)	\ 1	[4]

3	(a)	oil d betv plate adju until <i>mg</i> sym oil d <i>m</i> d (<i>an</i>)	Irop ch ween p es are ustable I oil dr = q × ubols e Irop vi eterm / two e	harged by friction/beta source parallel <u>metal</u> plates e horizontal e potential difference/field between plates rop is stationary <i>V/d</i> explained ewed through microscope ined from terminal speed of drop (when p.d. is zero) extras, 1 each)	 (1) (1) (1) (1) 	B1 B1 B1 B1 B1 B2		[7]
	(b)	3.2	× 10 ⁻¹	⁹ C		A1		[1]
4	(a	(i) (ii)	zero eithe or	field (strength) inside spheres er field strength is zero the fields are in opposite directions			B1 M1	[1]
	(b)	(i)	field	strength is (–) potential gradient <i>(not V/x)</i>			B1	[2] [1]
		(ii)	1.	field strength has maximum value at $x = 11.4$ cm			B1 B1	[2]
			2.	field strength is zero either at $x = 7.9$ cm (allow +0.3 cm)			B1	
			C	or at 0 to 1.4 cm or 11.4 cm to 12 cm			B1	[2]

5	 5 (a)) work done in bringing unit positive charge from infinity (to that point) 	M1 A1	[2]
	(b) b) (i) field strength is potential gradient	B1	[1]
	 (ii) field strength proportional to force (on particle Q) potential gradient proportional to gradient of (potential energy) graph so force is proportional to the gradient of the graph 	B1 B1 A0	[2]
	(c) energy = $5.1 \times 1.6 \times 10^{-19}$ (J) potential energy = $Q_1 Q_2 / 4\pi \varepsilon_0 r$ $5.1 \times 1.6 \times 10^{-19} = (1.6 \times 10^{-19})^2 / 4\pi \times 8.85 \times 10^{-12} \times r$ $r = 2.8 \times 10^{-10}$ m	C1 C1 C1 A1	[4]
	(d) (i) work is got out as x decreases so opposite sign	M1 A1	[2]
	(ii) energy would be doubled gradient would be increased	B1 B1	[2]
e	6 (a) region (of space) where a particle / body experiences a force	B1	[1]
	(b) similarity: e.g. force $\propto 1 / r^2$ potential $\propto 1 / r$	B1	[1]
	difference: e.g. gravitation force (always) attractive electric force attractive or repulsive	B1 B1	[2]
	(c) either ratio is $Q_1Q_2 / 4\pi\epsilon_0 m_1m_2G$ = $(1.6 \times 10^{-19})^2 / 4\pi \times 8.85 \times 10^{-12} \times (1.67 \times 10^{-27})^2 \times 6.67 \times 10^{-11}$ = 1.2×10^{36} or $F_E = 2.30 \times 10^{-28} \times R^{-2}$ (C1) $F_G = 1.86 \times 10^{-64} \times R^{-2}$ (C1) $F_E / F_G = 1.2 \times 10^{36}$ (A1)	C1 C1 A1	[3]