Point Charges \& Electric Potential

Mark Scheme 4

Level	International A Level
Subject	Physics
Exam Board	CIE
Topic	Electric Fields
Sub Topic	Point Charges \& Electric Potential
Paper Type	Theory
Booklet	Mark Scheme 4

Time Allowed:	54 minutes					
Score:	/45					
Percentage:		100				
A	A	B	C	D	E	U
$>85 \%$	77.5%	70%	62.5%	57.5%	45%	$<45 \%$

1
(a) force $=q_{1} q_{2} / 4 \pi \varepsilon_{0} x^{2}$
$=\left(6.4 \times 10^{-19}\right)^{2} /\left(4 \pi \times 8.85 \times 10^{-12} \times\left\{12 \times 10^{-6}\right\}^{2}\right)$
$=2.56 \times 10^{-17} \mathrm{~N}$

C1
C
(b) potential at P is same as potential at Q work done $=q \Delta V \quad \mathrm{M} 1$ $\Delta V=0$ so zero work done
(c) at midpoint, potential is $2 \times\left(6.4 \times 10^{-19}\right) /\left(4 \pi \varepsilon_{0} \times 6 \times 10^{-6}\right)$
at P, potential is $\left(6.4 \times 10^{-19}\right) /\left(4 \pi \varepsilon_{0} \times 3 \times 10^{-6}\right)+\left(6.4 \times 10^{-19}\right) /\left(4 \pi \varepsilon_{0} \times 9 \times 10^{-6}\right) \quad C 1$ change in potential $=\left(6.4 \times 10^{-19}\right) /\left(4 \pi \varepsilon_{0} \times 9 \times 10^{-6}\right)$ energy $=1.6 \times 10^{-19} \times\left(6.4 \times 10^{-19}\right) /\left(4 \pi \varepsilon_{0} \times 9 \times 10^{-6}\right)$ $=1.0 \times 10^{-22} \mathrm{~J}$

$$
=1.0 \times 10^{-22} \mathrm{~J}
$$

A1
[3] B1 AO A1
 moving charge from infinity to the point A1

all kinetic energy of α-particle converted into electric potential energy B1
(ii) potential energy $=\left(79 \times 2 \times\left\{1.6 \times 10^{-19}\right\}^{2}\right) /\left(4 \pi \times 8.85 \times 10^{-12} \times d\right) \quad \ldots \ldots \mathrm{C} 1$

(ii) $\quad F=Q q / 4 \pi \varepsilon_{0} d \times 1 / d=7.68 \times 10^{-13} \times 1 /\left(4.7 \times 10^{-14}\right) \quad \ldots \ldots \ldots \ldots \ldots \ldots \ldots$.

3 (a work done moving unit positive charge
M1
from infinity to the point
(b) (i) $x=18 \mathrm{~cm}$
(ii) $\begin{array}{ll}V_{\mathrm{A}}+V_{\mathrm{B}}=0 & \mathrm{C} 1\end{array}$
$\left(3.6 \times 10^{-9}\right) /\left(4 \pi \varepsilon_{0} \times 18 \times 10^{-2}\right)+q /\left(4 \pi \varepsilon_{0} \times 12 \times 10^{-2}\right)=0$ C1 $\mathrm{q}=-2.4 \times 10^{-9} \mathrm{C}$ A1 (use of $V_{A}=V_{B}$ giving $2.4 \times 10^{-9} \mathrm{C}$ scores one mark)
(c) field strength $=(-)$ gradient of graph B1 force $=$ charge \times gradient $/$ field strength or force \propto gradient B1 force largest at $x=27 \mathrm{~cm}$

4 (a charge is quantised / discrete quantities
B1
(b) (i) parallel so that the electric field is uniform / constant B1 horizontal so that either oil drop will not drift sideways or field is vertical or electric force is equal to weight
(ii) $q E=m g$ C1
$q \times 850 /\left(5.4 \times 10^{-3}\right)=7.7 \times 10^{-15} \times 9.8$ C1 $q=4.8 \times 10^{-19} \mathrm{C}$ and is negative A1
(c) charge changes by $1.6 \times 10^{-19} \mathrm{C}$ between droplets / integral multiples M1 so charge on electron is $1.6 \times 10^{-19} \mathrm{C}$ A0
C1
(a (i) either lines directed away from sphere or lines go from positive to negative or line shows direction of force on positive charge M1
so positively charged A1
(ii) either all lines (appear to) radiate from centre or all lines are normal to surface of sphere B1
(b) tangent to curve B1
in correct position and direction B1
(c) (i) $V=\left(0.76 \times 10^{-9}\right) /\left(4 \pi \times 8.85 \times 10^{-12} \times 0.024\right)$ C1
$=285 \mathrm{~V}$ A1
(ii) negative charge is induced on (inside of) box M1
formula applies to isolated (point) charge
OR less work done moving test charge from infinity A1
so potential is lower A1
(d) either gravitational field is always attractive
or field lines must be directed towards both box and sphereB1[2][2][1]

