Point Charges & Electric Potential

Mark Scheme 4

Level	International A Level
Subject	Physics
Exam Board	CIE
Торіс	Electric Fields
Sub Topic	Point Charges & Electric Potential
Paper Type	Theory
Booklet	Mark Scheme 4

Time Allowe	d:	54 minutes	54 minutes					
Score:		/45	/45					
Percentage:		/100						
A*	А	В	С	D	E	U		
>85%	'77.5%	70%	62.5%	57.5%	45%	<45%		

1	(a) force = $q_1q_2 / 4\pi\epsilon_0 x^2$ = $(6.4 \times 10^{-19})^2 / (4\pi \times 8.85 \times 10^{-12} \times \{12 \times 10^{-6}\}^2)$ = 2.56×10^{-17} N	C1 C
	$= 2.56 \times 10^{11} \text{ N}$	A1 [3

(b) potential at P is same as potential at QB1work done = $q\Delta V$ M1 $\Delta V = 0$ so zero work doneA0 [2]

(c)	at midpoint, potential is $2 \times (6.4 \times 10^{-19}) / (4\pi\epsilon_0 \times 6 \times 10^{-6})$	С	
	at P, potential is $(6.4 \times 10^{-19}) / (4\pi\epsilon_0 \times 3 \times 10^{-6}) + (6.4 \times 10^{-19}) / (4\pi\epsilon_0 \times 9 \times 10^{-6})$	C1	
	change in potential = $(6.4 \times 10^{-19}) / (4\pi\epsilon_0 \times 9 \times 10^{-6})$		
	energy = $1.6 \times 10^{-19} \times (6.4 \times 10^{-19}) / (4\pi\epsilon_0 \times 9 \times 10^{-6})$	С	
	$= 1.0 \times 10^{-22} \text{ J}$	A1	[4]

2	(a)	wor mov	k done per / on unit positive charge ving charge from infinity to the point	M1 A1	[2]
	(b)	(i)	α -particle and gold nucleus repel each other all kinetic energy of α -particle converted into electric potential energy	B1 B1	[2]
		(ii)	potential energy = $(79 \times 2 \times \{1.6 \times 10^{-19}\}^2) / (4\pi \times 8.85 \times 10^{-12} \times d)$ kinetic energy = $4.8 \times 1.6 \times 10^{-13}$ = 7.68×10^{-13} J equating to give $d = 4.7 \times 10^{-14}$ m	C1 C1 A1	[3]
		(ii)	$F = Qq / 4\pi\varepsilon_0 d \times 1 / d = 7.68 \times 10^{-13} \times 1 / (4.7 \times 10^{-14}) $ = 16 N	C1 A1	[2]
				[Tota	l: 9]

3	(a	work done moving unit positive charge from infinity to the point		
	(b)	(i) $x = 18 \text{ cm}$	A1	[1]
		(ii) $V_A + V_B = 0$ $(3.6 \times 10^{-9}) / (4\pi\epsilon_0 \times 18 \times 10^{-2}) + q / (4\pi\epsilon_0 \times 12 \times 10^{-2}) = 0$ $q = -2.4 \times 10^{-9} C$ (use of $V_A = V_B$ giving $2.4 \times 10^{-9} C$ scores one mark)	C1 C1 A1	[3]
	(c)	field strength = (-) gradient of graph force = charge × gradient / field strength or force ∞ gradient force largest at x = 27 cm	B1 B1 B1	[3]
4	(a	charge is quantised / discrete quantities	B1	[1]
	(b)	(i) parallel so that the electric field is uniform / constant horizontal so that <i>either</i> oil drop will not drift sideways <i>or</i> field is vertical	B1	
		or electric force is equal to weight	B1	[2]
		(ii) $qE = mg$ $q \times 850 / (5.4 \times 10^{-3}) = 7.7 \times 10^{-15} \times 9.8$ $q = 4.8 \times 10^{-19}$ C and is negative	C1 C1 A1	[3]
	(c)	charge changes by 1.6×10^{-19} C between droplets / integral multiples so charge on electron is 1.6×10^{-19} C	M1 A0	[1]

5	(a	(i)	either or or so pos	lines directed away from sphere lines go from positive to negative line shows direction of force on positive chargeM1 sitively chargedA1	[2]
		(ii)	either or	all lines (appear to) radiate from centre all lines are normal to surface of sphereB1	[1]
	(b)	tan in c	gent to correct p	curveB1 position and directionB1	[2]
	(c)	(i)	V = (= 2	$(0.76 \times 10^{-9}) / (4\pi \times 8.85 \times 10^{-12} \times 0.024)$	[2]
		(ii)	negati formul OR le so pot	ve charge is induced on (inside of) boxM1 la applies to isolated (point) charge ess work done moving test charge from infinityA1 ential is lowerA1	[3]
	(d)	eith or	er gra field	vitational field is <u>always</u> attractive d lines must be directed towards both box and sphereB1	[1]

<u>CHEMISTRY ONLINE</u> — TUITION —