Point Charges & Electric Potential

Mark Scheme 5

Level	International A Level				
Subject	Physics				
Exam Board	CIE				
Topic	Electric Fields				
Sub Topic	Point Charges & Electric Potential				
Paper Type	Theory				
Booklet	Mark Scheme 5				

Time Allowed: 60 minutes

Score: /50

Percentage: /100

A*	А	В	С	D	E	U
>85%	'77.5%	70%	62.5%	57.5%	45%	<45%

1	(a	field strength = potential gradient correct sign OR directions discussed	M1 A1	[2]
	(b)	area is 21.2 cm ² \pm 0.4 cm ²	C2	
		(if outside \pm 0.4 cm ² but within \pm 0.8 cm ² , allow 1 mark) 1.0 cm ² represents (1.0 × 10 ⁻² × 2.5 × 10 ³ =) 25 V potential difference = 530 V	C1 A1	[4]
	(c)	$1/2 mv^2 = qV$ $1/2 \times 9.1 \times 10^{-31} \times v^2 = 1.6 \times 10^{-19} \times 530$ $v = 1.37 \times 10^7 \text{ ms}^{-1}$	C1 A1	[2]
	(d)	(i) $d = 0$	B1	[1]
		(ii) acceleration decreases then increases some quantitative analysis (e.g. minimum at 4.0 cm) (any suggestion that acceleration becomes zero or that there is a	B1 B1	[2]

CHEMISTRY ONLINE — TUITION —

2 (a) either ratio of work done to mass/charge or work done moving unit mass/charge from infinity or both have zero potential at infinity

B1 [1]

(b) gravitational forces are (always attractive)
 electric forces can be attractive or repulsive
 for gravitational, work got out as masses come together

B1 B1

/mass moves from infinity

- B1
- for electric, work done on charges if same sign, work got out if opposite sign as charges come together
- B1 [4]

3 (a (i) force per unit positive charge (ratio idea essential)

B1 **[1]**

(ii) $E = Q / 4\pi \varepsilon_0 r^2$ ε_0 being the permittivity of free space

M1 A1 **[2]**

(b) (i) $2.0 \times 10^6 = Q / (4\pi \times 8.85 \times 10^{-12} \times 0.35^2)$ $Q = 2.7 \times 10^{-5} \text{ C}$

C A1 **[2]**

(ii) $V = (2.7 \times 10^{-5}) / (4\pi \times 8.85 \times 10^{-12} \times 0.35)$ = $7.0 \times 10^{5} \text{ V}$

C1 A1 **[2]**

[2]

(c) electrons are stripped off the atoms electrons and positive ions move in opposite directions, (giving rise to a current)

B1

B1

- 4 (a) field strength = potential gradient [- sign not required] B1 [1] [allow $E = \Delta V/\Delta x$ but not E = V/d]
 - (b) No field for x < r

B1

В1

for x > r, curve in correct direction, not going to zero discontinuity at x = r (vertical line required)

B1 [3]

- 5 grav. pot. energy= GM₁M2R 1 (a) energy = $\{6.67 \times 1011 \times 197 \times 4 \times (1.66 \times 1027)^2)/9.6 \times 1015$ 1 $= 1.51 \times 10^{47} \text{ J}$ 1 [3)
 - elec. pot. energy= 0 10 2 41 & 0 R 1 (ii) energy = $\{79 \times 2 \times (1.6 \times 10^{-19})^2 / 4 \text{ 1t} \times 8.85 \times 10^{-12} \times 9.6 \times 10^{-15} = 3.79 \times 10^{-12} \text{ J}$ 1 1 [3)

(For the substitution, -1 each error or omission to max 2 in (i) and in (ii))

- electric potential energy>> gravitational potential energy 1 (b) [1)
- either 6 MeV = 9.6 x 1013 J or 3.79 x 10 12 J = 24 MeV 1 (c) not enough energy to get close to the nucleus 1 [2)

- charge is quantised/enabled electron charge to be measured 6 (a B1 [1]
 - <u>all</u> are (approximately) $n \times (1.6 \times 10^{-19} \text{ C})$ (b) M1 $so e = 1.6 \times 10^{-19} \text{ C}$ (allow 2 sig. fig. only A1 [2] summing charges and dividing ten, without explanation scores 1/2 [3]
 - Total
- 7 (a) [3]
 - (b) (i) $E = Q/4\pi\varepsilon_0 r^2$C1 [3]
 - (ii) $V = Q/4\pi\varepsilon_0 r$ [2] $= 4.2 \times 10^5 \text{ V}......A1$
 - e.g. sphere not smooth, humid air, etcB1 (c) [1]