Point Charges \& Electric Potential

Mark Scheme 5

Level	International A Level
Subject	Physics
Exam Board	CIE
Topic	Electric Fields
Sub Topic	Point Charges \& Electric Potential
Paper Type	Theory
Booklet	Mark Scheme 5

$\begin{array}{llr}1 & \text { (aield strength }=\text { potential gradient } & \text { M1 } \\ & \text { correct sign OR directions discussed } & \text { A1 }\end{array}$
(b) area is $21.2 \mathrm{~cm}^{2} \pm 0.4 \mathrm{~cm}^{2}$ C2 (if outside $\pm 0.4 \mathrm{~cm}^{2}$ but within $\pm 0.8 \mathrm{~cm}^{2}$, allow 1 mark) $1.0 \mathrm{~cm}^{2}$ represents $\left(1.0 \times 10^{-2} \times 2.5 \times 10^{3}=\right) 25 \mathrm{~V} \quad \mathrm{C} 1$ potential difference $=530 \mathrm{~V} \quad$ A1
(c) $1 / 2 m v^{2}=q V$
$1 / 2 \times 9.1 \times 10^{-31} \times v^{2}=1.6 \times 10^{-19} \times 530 \quad$ C1
$v=1.37 \times 10^{7} \mathrm{~ms}^{-1}$
A1
(d) (i) $d=0$

B1
$\begin{array}{ll}\text { (ii) acceleration decreases then increases } & \mathrm{B} 1\end{array}$
some quantitative analysis (e.g. minimum at 4.0 cm)
B1
(any suggestion that acceleration becomes zero or that there is a deceleration scores 0/2)

2 (a) either ratio of work done to mass/charge or work done moving unit mass/charge from infinity or both have zero potential at infinity

3 (a (i) force per unit positive charge (ratio idea essential)
(ii) $E=Q / 4 \pi \varepsilon_{0} r^{2} \quad$ M1
ε_{0} being the permittivity of free space
(b) (i) $2.0 \times 10^{6}=Q /\left(4 \pi \times 8.85 \times 10^{-12} \times 0.35^{2}\right)$

$$
Q=2.7 \times 10^{-5} \mathrm{C}
$$

(ii) $\quad V=\left(2.7 \times 10^{-5}\right) /\left(4 \pi \times 8.85 \times 10^{-12} \times 0.35\right)$ C1

$$
=7.0 \times 10^{5} \mathrm{~V}
$$

(c) electrons are stripped off the atoms
electrons and positive ions move in opposite directions,
(giving rise to a current)

4 (a) field strength = potential gradient [- sign not required]
[allow $E=\Delta V / \Delta x$ but not $E=V / d$]
(b) $\begin{array}{ll}\text { No field for } x<r & \text { B1 } \\ \text { for } x>r, \text { curve in correct direction, not going to zero } & \text { B1 } \\ \text { discontinuity at } x=r \text { (vertical line required) } & \text { B1 }\end{array} \quad$ [3]
(a) (i)

$$
\begin{aligned}
& \text { grav. pot. energy }=\mathrm{GM}_{1} \mathrm{M} \text { MR } \\
& \text { energy }=\left\{6.67 \times 1011 \times 197 \times 4 \times(1.66 \times 1027)^{2}\right) / 9.6 \times 1015 \\
&=1.51 \times 10^{47} \mathrm{~J}
\end{aligned}
$$

(ii) elec. pot. energy $=0{ }_{1}{ }_{2}{ }_{2} 41 \& R R$
energy $=\left\{79 \times 2 \times\left(1.6 \times 10^{-19}\right)^{2}\right) / 41 \mathrm{t} \times 8.85 \times 10^{12} \times 9.6 \times 10^{15}$

$$
=3.79 \times 10^{\prime 12} \mathrm{~J}
$$

[3)
(For the substitution, -1 each errororomission to max 2 in (i) and in (ii))
(b) electric potential energy>> gravitational potential energy
(c) either6 $\mathrm{MeV}=9.6 \times 1013 \mathrm{~J}$ or $3.79 \times 10^{12} \mathrm{~J}=24 \mathrm{MeV}$ not enough energy to get close to the nucleus
(b) all are (approximately) $n \times\left(1.6 \times 10^{-19} \mathrm{C}\right)$
7 (a) field causes forces on the electrons M1
and the nucleus in opposite directions A1
(field causes) electrons (to be) stripped off the atom B1
(b) (i) $E=Q / 4 \pi \varepsilon_{0} r^{2}$ C1
$20 \times 10^{3} \times 10^{2}=\mathrm{Q} /\left(4 \pi \times 8.85 \times 10^{-12} \times 0.21^{2}\right.$. C1
charge $=9.8 \times 10^{-6} \mathrm{C}$ A1
(ii) $\quad V=Q / 4 \pi \varepsilon_{0} r$

$$
\begin{aligned}
& =\left(9.8 \times 10^{-6}\right) /\left(4 \pi \times 8.85 \times 10^{-12} \times 0.21\right) \\
& =4.2 \times 10^{5} \mathrm{~V} \text {.. } 1
\end{aligned}
$$

(c) e.g. sphere not smooth, humid air, etc ..B1

