Capacitance

Mark Scheme 1

Level	International A Level
Subject	Physics
Exam Board	CIE
Topic	Capacitance
Sub Topic	
Paper Type	Theory
Booklet	Mark Scheme 1

Time Allowed:	83 minutes						
Score:	/69						
Percentage:	/100						
A*	A	B	C	D	E	U	
$>85 \%$	77.5%	70%	62.5%	57.5%	45%	$<45 \%$	

1 (a for the two capacitors in parallel, capacitance $=96 \mu \mathrm{~F}$
C for complete arrangement, $1 / C_{T}=1 / 96+1 / 48$ $C_{T}=32 \mu \mathrm{~F}$
A1 [2
(b) p.d. across parallel combination is one half p.d. across single capacitor total p.d. $=9 \mathrm{~V}$
(a) (i) energy $=E Q$

> C1

$$
\begin{aligned}
& =9.0 \times 22 \times 10^{-3} \\
& =0.20 \mathrm{~J}
\end{aligned}
$$

(ii) 1. $C=Q / V$

$$
\begin{equation*}
V=\left(22 \times 10^{-3}\right) /\left(4700 \times 10^{-6}\right) \tag{C1}
\end{equation*}
$$

$$
\begin{equation*}
=4.7 \mathrm{~V} \tag{2}
\end{equation*}
$$

2. either $E=1 / 2 C V^{2}$

$$
\mathrm{C} 1
$$

A1 [2]

$$
\text { or } \quad \begin{align*}
E & =1 / 2 Q^{2} / C \tag{C1}\\
& =1 / 2 \times\left(22 \times 10^{-3}\right)^{2} / 4700 \times 10^{-6} \\
& =5.1 \times 10^{-2} \mathrm{~J} \tag{A1}
\end{align*}
$$

(b) energy lost (as thermal energy) in resistance/wires/battery/resistor B1 (award only if answer in (a)(i) > answer in (a)(ii)2)

3 (a e.g. store energy (do not allow 'store charge')
in smoothing circuits
blocking d.c.
in oscillators
any sensible suggestions, one each, max. 2
B2 [2]
(b) (potential across each capacitor is the same and $Q=C V$

B1 [1]
(ii) total charge $Q=Q_{1}+Q_{2}+Q_{3}$

M1 $C V=C_{1} V+C_{2} V+C_{3} V$
(allow $Q=C V$ here or in (i)) so $C=C_{1}+C_{2}+C_{3}$

A0
(c)

(ii)

4 (a) (i) ratio of charge and potential (difference)/voltage
(ratio must be clear) 81
(ii) capacitor has equal magnitudes of (+)ve and (-)ve charge 81
total charge on capacitor is zero (so does not store charge) 81
(+)ve and (-)ve charges to be separated M1
work done to achieve this so stores energy A1
(b) (i) capacitance of Y and Z together is $24 \approx$ C1
$1 / C=1 / 24+1 / 12$
$\mathrm{C}=8.0$ (allow 1 s.f.) A1
(ii) some discussion as to why all charge of one sign on one plate of X 81
$Q=(C V=) 8.0 \times 10^{-6} \times 9.0$ M1
$=72$ 咕AO
(iii) 1. $V=\left(72 \times 10^{-6}\right) /\left(12 \times 10^{-6}\right)$ $=6.0 \mathrm{~V}$ (allow 1 s.f.) (allow 72/12) A1
2. either $Q=12 \times 10^{-6} \times 3.0$ or charge is shared between Y and Z C1 charge $=36$ thA1Must have correct voltage in (iii) 1 ifjust quote of $36 p \mathrm{C}$ in (iii) 2.(a) e.g. storing energy
separating charge(a) e.g. storing energy
blocking d.c.
producing electrical oscillations
tuning circuits
smoothing
preventing sparks
timing circuits
(any two sensible suggestions, 1 each, max 2) B2

(b) (i) $-Q$ (induced) on opposite plate of C_{1}

(b) (i) $-Q$ (induced) on opposite plate of C_{1} B1 B1
(b) by charge conservation, charges are $-Q,+Q,-Q,+Q,-Q$
(b) by charge conservation, charges are $-Q,+Q,-Q,+Q,-Q$ B1 B1

(ii) total p.d. $V=V_{1}+V_{2}+V_{3}$

(ii) total p.d. $V=V_{1}+V_{2}+V_{3}$

(ii) total p.d. $V=V_{1}+V_{2}+V_{3}$ B1 B1 B1

(ii) $\quad Q / C=Q / C_{1}+Q / C_{2}+Q / C_{3}$

(ii) $\quad Q / C=Q / C_{1}+Q / C_{2}+Q / C_{3}$

(ii) $\quad Q / C=Q / C_{1}+Q / C_{2}+Q / C_{3}$ B1 B1 B1
$1 / C=1 / C_{1}+1 / C_{2}+1 / C_{3}$
$1 / C=1 / C_{1}+1 / C_{2}+1 / C_{3}$
$1 / C=1 / C_{1}+1 / C_{2}+1 / C_{3}$ A0 A0 A0 AO AO AO
(c) (i) energy $=1 / 2 C V^{2}$ or energy $=1 / 2 Q V$ and $C=Q / V$ C1
$=1 / 2 \times 12 \times 10^{-6} \times 9.0^{2}$

$$
=4.9 \times 10^{-4} \mathrm{~J}
$$

(ii) energy dissipated in (resistance of) wire/as a spark B1
[2]
[2]
[2] [2][1]

6 (a) charges on plates are equal and opposit,e \quad M1
so no resultant charge A1
energy stored because there is charge separation 81
[3]
(b) (i) capacitance $=Q / V$

C1

$$
\begin{aligned}
& :\left(18 \times 10^{-3}\right) / 10 \\
& =1800 \mu \mathrm{~F}
\end{aligned}
$$

(ii) use of area under graph or energy= $1 / 2 \mathrm{CV} 2$

$$
\text { energy }=2.5 \times 15.7 \times 10^{-3} \text { or energy }=1 / 2 \times 1800 \times 10^{-6} \times\left(1 \mathrm{a}^{2}-7.5^{2}\right)
$$

$$
=39 \mathrm{~mJ}
$$

A1
(c) combined capacitance of $Y \& Z=20 \mu \mathrm{~F}$ or total capacitance $=6.67 \mu \mathrm{~F}$ p.d. across capacitor $\mathrm{X}=8 \mathrm{~V}$ or p.d. across combination= 12 V C1 charge $=10 \times 10^{-6} \times 8$ or $6.67 \times 10^{-6} \times 12$ $=8 \mathrm{O} \mu \mathrm{C}$

7 (a charge / potential (difference) (ratio must be clear)
(b) (i) $V=Q / 4 \pi \varepsilon_{0} r$
(ii) $C=Q / V=4 \pi \varepsilon_{0} r$ and $\underline{4 \pi \varepsilon_{0}}$ is constant M1 so $C \propto r$ A0
(c) (i) $r=C / 4 \pi \varepsilon_{0} r$
$r=\left(6.8 \times 10^{-12}\right) /\left(4 \pi \times 8.85 \times 10^{-12}\right)$ C

$$
=6.1 \times 10^{-2} \mathrm{~m}
$$

A
(ii) $Q=C V=6.8 \times 10^{-12} \times 220$

$$
=1.5 \times 10^{-9} \mathrm{C}
$$

A1
(d) (i) $V=Q / C=\left(1.5 \times 10^{-9}\right) /\left(18 \times 10^{-12}\right)$
$=83 \mathrm{~V}$
(ii) either energy $=1 / 2 \mathrm{CV}^{2}$ C1

$$
\Delta E=1 / 2 \times 6.8 \times 10^{-12} \times 220^{2}-1 / 2 \times 18 \times 10^{-12} \times 83^{2}
$$

$$
=1.65 \times 10^{-7}-6.2 \times 10^{-8}
$$

$$
\begin{equation*}
=1.03 \times 10^{-7} \mathrm{~J} \tag{A}
\end{equation*}
$$

or

$$
\text { energy }=1 / 2 Q V
$$

$\Delta E=1 / 2 \times 1.5 \times 10^{-9} \times 220-1 / 2 \times 1.5 \times 10^{-9} \times 83$

$$
=1.03 \times 10^{-7} \mathrm{~J}
$$

(a (i) work done moving unit positive charge from infinity to the point
(ii) charge / potential (difference) (ratio must be clear)
(b) $\left(\right.$ capacitance $=\left(2.7 \times 10^{-6}\right) /\left(150 \times 10^{3}\right)$
(allow any appropriate values)
capacitance $=1.8 \times 10^{-11} \quad$ (allow 1.8 ± 0.05)
C
A1
(ii) either energy $=1 / 2 C V^{2}$ or energy $=1 / 2 Q V$ and $Q=C V$ C1
energy $=1 / 2 \times 1.8 \times 10^{-11} \times\left(150 \times 10^{3}\right)^{2}$ or $1 / 2 \times 2.7 \times 10^{-6} \times 150 \times 10^{3}$ $=0.20 \mathrm{~J}$
(c) either since energy $\propto V^{2}$, capacitor has $(1 / 2)^{2}$ of its energy left or full formula treatment C1 energy lost $=0.15 \mathrm{~J}$ A1

