Capacitance Mark Scheme 1

Level			International A Level
Subject			Physics
Exam Boar	d		CIE
Торіс			Capacitance
Sub Topic			
Paper Type	2		Theory
Booklet			Mark Scheme 1
Time Allowe	ed:	83 minutes	s
Time Allowe Score:	ed:	83 minutes /69	5
			S
Score:		/69	
Score:		/69	

1 ((a	for the two capacitors in parallel, capacitance = 96 μ F for complete arrangement, 1/ C_T = 1/96 + 1/48		
		$C_{\rm T} = 32\mu{\rm F}$	A1	[2
	(b)	p.d. across parallel combination is one half p.d. across single capacitor total p.d. = $9V$	C1 A	[2]

- (a e.g. store energy (do not allow 'store charge') in smoothing circuits blocking d.c. in oscillators any sensible suggestions, one each, max. 2
 B2 [2]
 - (b) (potential across each capacitor is the same and Q = CV B1 [1]
 - (ii) total charge $Q = Q_1 + Q_2 + Q_3$ $CV = C_1V + C_2V + C_3V$ (allow Q = CV here or in (i)) so $C = C_1 + C_2 + C_3$ A0 [2]

A1 [1

<u>CHEMISTRY ONLINE</u> — TUITION —

(c)

(ii)

4	(a)	(i)	ratio of charge and potential (difference)/voltage (<i>ratio must be clear</i>)	8	1 [1]
		(ii)	capacitor has equal magnitudes of (+)ve and (-)ve charge total charge on capacitor is zero (so does not store charge) (+)ve and (-)ve charges to be separated work done to achieve this so stores energy	8 8 M A	1 11]
	(b)) (i)	capacitance of Y and Z together is 24 % F	С	រា	
			1/C= 1/24+1/12 C=8.0 ��F <i>(allow</i> 1 s.f.)	А	1 [2]
		(ii)	some discussion as to why all charge of one sign on one plate of X $Q = (CV=) 8.0 \times 10^{-6} \times 9.0$ = 72%tC	8 M A]
		(iii)	1. $V = (72 \times 10^{-6}) / (12 \times 10^{-6})$ = 6.0V <i>(allow</i> 1 s.f.) (allow 72/12)	А	1 [1]]
			 either Q = 12 x 10⁻⁶ x 3.0 or charge is shared between Y and Z charge= 36%C Must have correct voltage in (iii) 1 ifjust quote of 36pC in (iii)2. 	C A]
(a)	-	sepa block prod tunin smoo prev timin	ng energy rating charge king d.c. ucing electrical oscillations g circuits othing enting sparks g circuits sensible suggestions, 1 each, max 2)	В2	[2]	
(b)	(i)		induced) on opposite plate of C_1 narge conservation, charges are $-Q$, $+Q$, $-Q$, $+Q$, $-Q$	B1 B1	[2]	
	(ii)	Q/C	p.d. $V = V_1 + V_2 + V_3$ = $Q/C_1 + Q/C_2 + Q/C_3$ = $1/C_1 + 1/C_2 + 1/C_3$	B1 B1 A0	[2]	
(c)	(i)	ener	gy = $\frac{1}{2}CV^2$ or energy = $\frac{1}{2}QV$ and $C = Q/V$	C1		
. ,	. ,		$= \frac{1}{2} \times 12 \times 10^{-6} \times 9.0^{2}$ = 4.9 × 10 ⁻⁴ J	A1	[2]	

(ii) energy dissipated in (resistance of) wire/as a spark

5

[1]

Β1

	6	(a)	so no res	on plates are equal and opposit,e ultant charge ored because there is charge separation	M1 A1 81		[3]
		(b)	(i) capa	citance = $QI V$: $(18 \times 10^{-3}) / 10$ = 1800 µF	C1 A1		[2]
			(ii) use o	of area under graph or energy= $\frac{1}{2}CV2$	C1		
			ener	gy= 2.5 x 15.7 x 10 ⁻³ σ energy=1/2 x 1800 x 10 ⁻⁶ x (1a ² - 7.5 ²) = 39mJ	A1		[2]
		(c)	p.d. acros	capacitance of Y & Z = 20 μ F or total capacitance = 6.67 μ F ss capacitor X = 8V or p.d. across combination= 12V 10 x 10 ⁻⁶ x 8 or 6.67 x 10 ⁻⁶ x 12	C1 C1		
				30μC	A1		[3]
7	(a	ı cł	narge / po	tential (difference) (<i>ratio must be clear</i>)		B1	[1]
	(b) (i) V = Q /	$4\pi\epsilon_0 r$		B1	[1]
		(ii)	$C = Q / $ so $C \propto$	$V = 4\pi\varepsilon_0 r$ and $\frac{4\pi\varepsilon_0 \text{ is constant}}{r}$		M1 A0	[1]
	(c	;) (i	r = C / 4 r = (6.8 = 6.1 ×	$ imes$ 10 ⁻¹²) / (4 π × 8.85 × 10 ⁻¹²)		C1 C A	[3]
		(iij		Y = 6.8 × 10 ⁻¹² × 220 1.5 × 10 ⁻⁹ C		A1	[1]
	(d	l) (i) V = Q/0 = 83 V	$C = (1.5 \times 10^{-9}) / (18 \times 10^{-12})$		A1	[1
		(ii) either	energy = $\frac{1}{2}CV^2$ $\Delta E = \frac{1}{2} \times 6.8 \times 10^{-12} \times 220^2 - \frac{1}{2} \times 18 \times 10^{-12} \times 83^2$ = 1.65 × 10 ⁻⁷ - 6.2 × 10 ⁻⁸		C1 C1	
			or	$= 1.03 \times 10^{-7} \text{ J}$ = 1.03 × 10 ⁻⁷ J energy = ½QV $\Delta E = \frac{1}{2} \times 1.5 \times 10^{-9} \times 220 - \frac{1}{2} \times 1.5 \times 10^{-9} \times 83$ = 1.03 × 10 ⁻⁷ J	(C1 (C1 (A1)	[3]
	-		_		•		

asherrana@chemistryonlinetution.com

8	(a	 (i) work done moving unit positive charge from infinity to the point 			[2]
		(ii)	charge / potential (difference) (ratio must be clear)	В	[1]
	(b)	(capacitance = $(2.7 \times 10^{-6}) / (150 \times 10^{3})$ (allow any appropriate values)	С	
			capacitance = 1.8×10^{-11} (allow 1.8 ±0.05)	A1	[2]
		(ii)	<i>either</i> energy = $\frac{1}{2}CV^2$ or energy = $\frac{1}{2}QV$ <u>and</u> Q = CV energy = $\frac{1}{2} \times 1.8 \times 10^{-11} \times (150 \times 10^3)^2$ or $\frac{1}{2} \times 2.7 \times 10^{-6} \times 150 \times 10^3$		
			= 0.20 J	A1	[2]
	(c)	or	er since energy ∝ V ² , capacitor has (½) ² of its energy left full formula treatment orgy lost = 0.15 J	C1 A1	[2]

CHEMISTRY ONLINE — TUITION —