Capacitance

Mark Scheme 2

Level	International A Level					
Subject	Physics					
Exam Board	CIE					
Topic	Capacitance					
Sub Topic						
Paper Type	Theory					
Booklet	Mark Scheme 2					

Time Allowed: 88 minutes

Score: /73

Percentage: /100

CHEMISTRY ONLINE

A*	А	В	С	D	Е	U
>85%	'77.5%	70%	62.5%	57.5%	45%	<45%

- (a) e.g. 'storage of charge' / storage of energy blocking of direct current producing of electrical oscillations smoothing (any two, 1 mark each) B2 [2] (b) (i) capacitance of parallel combination = $60 \mu F$ C1 total capacitance = 20 µF **A1** [2] (ii) p.d. across parallel combination = ½ × p.d. across single capacitor C₁ maximum is 9V **A1** [2] (c) either energy = $\frac{1}{2}CV^2$ or energy = $\frac{1}{2}QV$ and Q = CVC₁ energy = $\frac{1}{2} \times 4700 \times 10^{-6} \times (18^2 - 12^2)$ C = 0.42 J**A1** [3]

[Total: 8]

3 **(a (i)** ratio of charge (on body) and its potential (do not allow reference to plates of a capacitor)

B1 [1]

(ii) (potential at surface of sphere =) $V = Q / 4\pi \varepsilon_0 r$ $C = Q / V = 4\pi \varepsilon_0 r$ M1 A0 [1]

(b) (i) $C = 4 \times \pi \times 8.85 \times 10^{-12} \times 0.36$ = 4.0×10^{-11} F (allow 1 s.f.)

A1 [1]

(ii) Q = CV= $4.0 \times 10^{-11} \times 7.0 \times 10^{5}$ = $2.8 \times 10^{-5} C$

A1 [1]

(c) plastic is an insulator / not a conductor / has no free electrons charges do not move (on an insulator) either so no single value for the potential or charge cannot be considered to be at centre

B1 B1

[3]

B1

(d) either energy = $\frac{1}{2}CV^2$ or energy = $\frac{1}{2}QV$ and C = Q/V energy = $\frac{1}{2} \times 4 \times 10^{-11} \times \{(7.0 \times 10^5)^2 - (2.5 \times 10^5)^2)\}$

A [3]

C1

4 (a at t = 1.0 s, V = 2.5 V energy = $\frac{1}{2}CV^2$ $0.13 = \frac{1}{2} \times C \times (8.0^2 - 2.5^2)$ $C = 4500 \,\mu\text{F}$

C1 C1 M A [3]

(b) use of two capacitors in series in all branches of combination connected into correct parallel arrangement

M1 A1 [2]

5	(a)	_	separate charges, store energy, smoothing circuit. etc	[1]	
	(b)	(i)	charge = current × timeB1	[1]	
	(ii) area is $21.2~\text{cm}^2$ (allow $\pm 0.5~\text{cm}^2$)				
		(iii)	capacitance = Q/V	[2]	
	(c)	1⁄₂ ×	er energy = $\frac{1}{2}CV^2$ or energy = $\frac{1}{2}QV$ and $C = Q/V$	[3]	
6	(a)	(i)	peak voltage = 6√2 peak voltage = 8.48 V	C1 A1	[2]
		(ii)	zero because <i>either</i> no current in circuit (and $V = IR$) or all p.d. across diode	B1	[1]
	(b)		veform: half-wave rectification peak height at about 4.25 cm half-period spacing of 2.0 cm ow ±¼ square for height and half-period)		[3]
	(c)	(i)	capacitor shown in parallel with resistor	B1	[1]
		(ii)	either energy = $\frac{1}{2}CV^2$ or = $\frac{1}{2}QV$ and $Q = CV$ = $\frac{1}{2}$ x 180 x 10 ⁻⁶ x $(6\sqrt{2})^2$ = 6.48 x 10 ⁻³ J	C1 C1 A1	[3]
		(iii)	either fraction = 0.43 ² or final energy = 1.2 mJ fraction = 0.18	C1 A1	[2]

- 7 (a) Q/V, with symbols explained [do not allow in terms of units] B1 [1]
 - (b) (on a capacitor, there is charge separation/there are + and charges M1

 either to separate charges, work must be done
 or energy released when charges 'come together' A1 [2]
 - (ii) <u>either</u> energy = $\frac{1}{2}CV^2$ <u>or</u> energy = $\frac{1}{2}QV$ and C = Q/V change = $\frac{1}{2} \times 1200 \times 10^{-6} (50^2 15^2)$ C1 change = 1.4 J (1.37) A1 [3] [allow 2 marks for $\frac{1}{2}C(\Delta V)^2$, giving energy = 0.74 J)