## Current, Potential Difference & Power

## Mark Scheme 1

| Level      | International A Level                 |
|------------|---------------------------------------|
| Subject    | Physics                               |
| Exam Board | CIE                                   |
| Торіс      | Current of Electricity                |
| Sub Topic  | Current, Potential Difference & Power |
| Paper Type | Theory                                |
| Booklet    | Mark Scheme 1                         |

| Time Allowe | d:     | 80 minutes | 80 minutes |       |     |      |  |
|-------------|--------|------------|------------|-------|-----|------|--|
| Score:      |        | /66        |            |       |     |      |  |
| Percentage: |        | /100       |            |       |     |      |  |
|             |        |            |            |       |     |      |  |
|             |        |            |            |       |     |      |  |
| A*          | A      | В          | С          | D     | E   | U    |  |
| >85%        | '77.5% | 70%        | 62.5%      | 57.5% | 45% | <45% |  |

| 1 | (a  | e.m.f.: energy converted from chemical/other forms to electrical per unit charge p.d.: energy converted from electrical to other forms per unit char                                                                               | B1<br>B1      | [2]        |
|---|-----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|------------|
|   | (b) | <ul> <li>(i) the p.d. across the lamp is <u>less than</u> 12V or there are lost volts/power/energy in the battery/internal resistance</li> <li>(ii) R = V<sup>2</sup>/P (or V = RI and P = VI)<br/>= 144/48<br/>= 3.0 Ω</li> </ul> | B1<br>C<br>A1 | [1]<br>[2] |
|   |     | (iii) $I = E/(R_T + r)$<br>= 12/2.0<br>= 6.0 A                                                                                                                                                                                     | C<br>A1       | [2]        |
|   |     | (iv) power of each lamp = $I^2 R$<br>= $(3.0)^2 \times 3.0$<br>= 27 W                                                                                                                                                              | C1<br>A       | [2]        |
|   | (c) | less resistance (in circuit)/more current<br>more lost volts/less p.d. across battery                                                                                                                                              | M1<br>A1      | [2]        |

| 2 | (a       | p.d. = work (done) / charge OR energy transferred from (electrical to other forms)<br>/ (unit) charge                                                                                   | B1             | [1] |
|---|----------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|-----|
|   | (b)      | (i) $R = \rho l / A$<br>$\rho = 18 \times 10^{-9}$<br>$R = (18 \times 10^{-9} \times 75) / 2.5 \times 10^{-6} = 0.54 \Omega$                                                            | C1<br>C1<br>A1 | [3] |
|   |          | (ii) $V = IR$<br>$R = 38 + (2 \times 0.54)$<br>I = 240 / 39.08 = 6.1 (6.14) A                                                                                                           | C1<br>C1<br>A1 | [3] |
|   |          | (iii) $P = I^2 R \text{ or } P = VI \text{ and } V = IR \text{ or } P = V^2 / R \text{ and } V = IR$<br>= $(6.14)^2 \times 2 \times 0.54$<br>= 41 (40.7) W                              | C1<br>C1<br>A1 | [3] |
|   | (c)<br>C | area of wire is less (1/5) hence resistance greater (×5) )<br>DR <i>R</i> is $\propto$ 1/A therefore <i>R</i> is greater<br>p.p.d. across wires greater so power loss in cables increas | A1             | [2] |

| 3 | (a (i) chemical to electrical                                                                                             | B1       | [1] |
|---|---------------------------------------------------------------------------------------------------------------------------|----------|-----|
|   | (ii) electrical to thermal / heat or heat and light                                                                       | B1       | [1] |
|   | <b>(b)</b> (i) $(P_{\rm B}=) EI \text{ or } I^2(R_1+R_2)$                                                                 | А        | [1] |
|   | (ii) $(P_{\rm R} =) I^2 R_1$                                                                                              | A1       | [1] |
|   | (c) $R = \rho l / A$ or clear from the following equation                                                                 | B1       |     |
|   | ratio = $I^2 R_1 / I^2 R_2 = \frac{\rho l / \pi d^2}{\rho (2l) / \pi (2d)^2}$ or $R_1$ has 8× resistance of $R_2$         | C1       |     |
|   | = 8  or  8:1                                                                                                              | A1       | [3] |
|   | (d) $P = V^2 / R$ or $E^2 / R$<br>( <i>V</i> or <i>E</i> the same) hence ratio is 1/8 or 1:8 = 0.125 (allow ecf from (c)) | C1<br>A1 | [2] |
|   |                                                                                                                           |          |     |
| 4 | (a charge = current × time                                                                                                | B1       | [1] |
|   | (b) (i) $P = V^2 / R$<br>= $(240)^2 / 18 = 3200 W$                                                                        | C1<br>A  | [2] |
|   | (ii) $I = V / R = 240 / 18 = 13.3 \text{ A}$                                                                              | А        | [1] |
|   | (iii) charge = $It = 13.3 \times 2.6 \times 10^6$<br>= 3.47 × 10 <sup>7</sup> C                                           | C1<br>A1 | [2] |

(iv) number of electrons =  $3.47 \times 10^7 / 1.6 \times 10^{-19} (= 2.17 \times 10^{26})$  C1 number of electrons per second =  $2.17 \times 10^{26} / 2.6 \times 10^6 = 8.35 \times 10^{19}$  A1 [2]

| 5 | (a) | p.d.  | = <u>work done / energy transformed</u> (from electrical to other forms) charge                                                                               | B1       | [1] |
|---|-----|-------|---------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|-----|
|   | (b) | (i)   | maximum 20 V                                                                                                                                                  | A1       | [1] |
|   |     | (ii)  | minimum = (600 / 1000) × 20<br>= 12 V                                                                                                                         | C1<br>A1 | [2] |
|   | (c) | (i)   | use of $1.2  k\Omega$<br>1/1200 + 1/600 = 1/ <i>R</i> , <i>R</i> = 400 $\Omega$                                                                               | M1<br>A1 | [2] |
|   |     | (ii)  | total parallel resistance ( $R_2$ + LDR) is less than $R_2$ (minimum) p.d. is reduced                                                                         | M1<br>A1 | [2] |
| 6 | (a  | ) (i) | $R = V^2 / P \text{ or } P = IV \text{ and } V = IR$                                                                                                          |          |     |
|   | (1  | , (,  | $= (220)^2 / 2500$<br>= 19.4\Omega (allow 2 s.f.) A1                                                                                                          | [2]      |     |
|   |     | (ii)  | $R = \rho l / A$ $l = [19.4 \times 2.0 \times 10^{-7}] / 1.1 \times 10^{-6}$ $= 3.53 \text{ m} (allow 2 \text{ s.f.})$ C1 | [3]      |     |
|   | (b  | ) (i) | P = 625, 620 or 630 W A1                                                                                                                                      | [1]      |     |
|   |     | (ii)  | R needs to be reduced     C1       Either     length ¼ of original length       or area 4× greater                                                            |          |     |
|   |     |       | or diameter 2× greater A1                                                                                                                                     | [2]      |     |

| 7 | (a) | total resistance = 20 (k $\Omega$ )<br>current = 12 / 20 (mA) or potential divider formula | C1<br>C1 |     |
|---|-----|--------------------------------------------------------------------------------------------|----------|-----|
|   |     | p.d. = [12 / 20] × 12 = 7.2 V                                                              | A1       | [3] |

- (b) parallel resistance =  $3 (k\Omega)$  C1

   total resistance  $8 + 3 = 11 (k\Omega)$  C1

   current =  $12 / 11 \times 10^3 = 1.09 \times 10^{-3}$  or  $1.1 \times 10^{-3}$ A
   A1
   [3]
- (c) (i)LDR resistance decreases<br/>total resistance (of circuit) is less hence current increasesM1<br/>A1[2](ii)resistance across XY is less<br/>less proportion of 12 V across XY hence p.d. is lessM1<br/>A1[2]

