Current, Potential Difference \& Power

Mark Scheme 1

Level	International A Level
Subject	Physics
Exam Board	CIE
Topic	Current of Electricity
Sub Topic	Current, Potential Difference \& Power
Paper Type	Theory
Booklet	Mark Scheme 1

(a e.m.f.: energy converted from chemical/other forms to electrical per unit charge
(b) (i) the p.d. across the lamp is less than 12 V or there are lost volts/power/energy in the battery/internal resistance
(ii) $R=V^{2} / P$ (or $V=R I$ and $P=V I$)

C
$=144 / 48$

$$
=3.0 \Omega
$$

(iii) $I=E /\left(R_{T}+r\right)$

$$
=12 / 2.0
$$

$$
=6.0 \mathrm{~A}
$$

(iv) power of each lamp $=I^{2} R$

$$
\begin{aligned}
& =(3.0)^{2} \times 3.0 \\
& =27 \mathrm{~W}
\end{aligned}
$$

(c) less resistance (in circuit)/more current

2 (a p.d. = work (done) / charge OR energy transferred from (electrical to other forms) I (unit) charge
(b) (i) $R=\rho l / A$

C1
$\rho=18 \times 10^{-9} \quad$ C1
$R=\left(18 \times 10^{-9} \times 75\right) / 2.5 \times 10^{-6}=0.54 \Omega$
A1
(ii) $\quad V=I R$

C1
$R=38+(2 \times 0.54)$
C1
$I=240 / 39.08=6.1(6.14) \mathrm{A} \quad \mathrm{A} 1$
(iii) $P=I^{2} R$ or $P=V I$ and $V=I R$ or $P=V^{2} / R$ and $V=I R$

C1
$\begin{array}{ll}=(6.14)^{2} \times 2 \times 0.54 & \text { C1 }\end{array}$
$=41(40.7) \mathrm{W}$
A1
(c) area of wire is less (1/5) hence resistance greater ($\times 5$))

OR R is $\propto 1 / A$ therefore R is greater p.p.d. across wires greater so power loss in cables increas

B1
(b) (i) $\left(P_{\mathrm{B}}=\right) E I$ or $I^{2}\left(R_{1}+R_{2}\right)$

A [1]
(ii) $\left(P_{R}=\right) I^{2} R_{1}$

A1 [1]
(c) $R=\rho l / A$ or clear from the following equation B1
ratio $=I^{2} R_{1} / I^{2} R_{2}=\frac{\rho l / \pi d^{2}}{\rho(2 l) / \pi(2 d)^{2}}$ or R_{1} has $8 \times$ resistance of R_{2}

$$
=8 \text { or } 8: 1
$$

(d) $P=V^{2} / R$ or E^{2} / R
(V or E the same) hence ratio is $1 / 8$ or $1: 8=0.125$ (allow ecf from (c))

4 (a charge $=$ current \times time
(b) (i) $P=V^{2} / R$

$$
=(240)^{2} / 18=3200 \mathrm{~W}
$$

(ii) $I=V / R=240 / 18=13.3 \mathrm{~A}$
(iii) charge $=I t=13.3 \times 2.6 \times 10^{6}$

$$
=3.47 \times 10^{7} \mathrm{C}
$$

(iv) number of electrons $=3.47 \times 10^{7} / 1.6 \times 10^{-19}\left(=2.17 \times 10^{26}\right)$ number of electrons per second $=2.17 \times 10^{26} / 2.6 \times 10^{6}=8.35 \times 10^{19}$

C1

C1 A1

C1
A1

A
A [1]

5
(a) p.d. = work done / energy transformed (from electrical to other forms) charge
(b) (i) maximum 20 V
(ii) minimum $=(600 / 1000) \times 20$

$$
=12 \mathrm{~V}
$$

(c) (i) use of $1.2 \mathrm{k} \Omega$
$1 / 1200+1 / 600=1 / R, R=400 \Omega$
(ii) total parallel resistance ($\mathrm{R}_{2}+\mathrm{LDR}$) is less than R_{2} (minimum) p.d. is reduced

6
(a) (i) $R=V^{2} / P$ or $P=I V$ and $V=I R$

$$
\begin{aligned}
& =(220)^{2} / 2500 \\
& =19.4 \Omega \text { (allow } 2 \text { s.f. })
\end{aligned}
$$

(ii) $R=\rho l / A$
$l=\left[19.4 \times 2.0 \times 10^{-7}\right] / 1.1 \times 10^{-6}$
C1

$$
=3.53 \mathrm{~m} \quad \text { (allow } 2 \text { s.f. }) \quad \text { A1 }
$$,

(b) (i) $P=625,620$ or 630 W

A1
(ii) R needs to be reduced Ether length $1 / 4$ of original length or area $4 \times$ greater or diameter $2 \times$ greater A1

B1 [1]

A1 [1]
C1
A1

M1
A1
M1
A1
[2]
[2]
[3]
[1]
[2]

7 (a) total resistance $=20(\mathrm{k} \Omega)$ current $=12 / 20(\mathrm{~mA})$ or potential divider formula C1 p.d. $=[12 / 20] \times 12=7.2 \mathrm{~V}$
(b) parallel resistance $=3(\mathrm{k} \Omega) \quad \mathrm{C} 1$
total resistance $8+3=11(\mathrm{k} \Omega) \quad$ C1
current $=12 / 11 \times 10^{3}=1.09 \times 10^{-3}$ or $1.1 \times 10^{-3} \mathrm{~A} \quad \mathrm{~A} 1$
(c) (i) LDR resistance decreases M1 total resistance (of circuit) is less hence current increases A1
(ii) resistance across XY is less M1 less proportion of 12 V across XY hence p.d. is less A1
[3]
[3]

