Resistance \& Resistivity Mark Scheme 1

Level	International A Level
Subject	Physics
Exam Board	CIE
Topic	Current of Electricity
Sub Topic	Resistance \& Resistivity
Paper Type	Theory
Booklet	Mark Scheme 1

(b) (i) (no energy lost in battery because) no/negligible internal resistance
(ii) $I=V / R$

$$
\begin{aligned}
& =8 / 15 \times 10^{3} \text { or } 1.6 / 3.0 \times 10^{3} \text { or } 2.4 / 4.5 \times 10^{3} \text { or } 12 / 22.5 \times 10^{3} \\
& =0.53 \times 10^{-3} \mathrm{~A}
\end{aligned}
$$

[2]
(iii) p.d. across $\mathrm{X}=12-8.0-3.0 \times 10^{3} \times 0.53 \times 10^{-3}(=2.4 \mathrm{~V})$
$R_{\mathrm{X}}=2.4 /\left(0.53 \times 10^{-3}\right)$
or
$R_{\text {tot }}=12 / 0.53 \times 10^{-3}\left(=22.5 \times 10^{3} \Omega\right)$
$R_{\mathrm{X}}=(22.5-15.0-3.0) \times 10^{3}$
$4.5(2) \times 10^{3} \Omega$
(iv) resistance decreases hence current (in circuit) is greater
p.d. across X and Y is greater hence p.d across Z decreas
or explanation in terms of potential divider:
R_{Z} decreases so $R_{Z} /\left(R_{X}+R_{Y}+R_{Z}\right)$ is less
therefore p.d. across \mathbf{Z} decreases

C1)

A1
C A1 M1 A1

$$
\begin{align*}
\text { (} \quad R & =\rho l / A & & \text { C1 } \\
& =\left(5.1 \times 10^{-7} \times 0.50\right) / \pi\left(0.18 \times 10^{-3}\right)^{2}=2.5(2.51) \Omega & & \text { M1 }
\end{align*}
$$

(b) (i) resistance of $\mathrm{CD}=8 \times$ resistance of $\mathrm{AB}=20(\Omega)$
circuit resistance $=[1 / 5.0+1 / 20]^{-1}=4.0(\Omega)$ C1
current $=V / R=6.0 / 4.0$ C1

$$
=1.5 \mathrm{~A}
$$

(ii) power in $\mathrm{AB}=I^{2} R$

$$
\begin{array}{rlrl}
\text { or power } & =V^{2} / R & \mathrm{C} 1 \\
& =(3.0)^{2} / 2.5=3.6 \mathrm{~W} & & \text { A1 }
\end{array}
$$

A1

$$
=(1.2)^{2} \times 2.5=3.6 \mathrm{~W}
$$

(iii) potential drop A to $\mathrm{M}=1.25 \times 1.2=1.5 \mathrm{~V}$
potential drop C to $\mathrm{N}=3.0 \mathrm{~V}$
p.d. $\mathrm{MN}=1.5 \mathrm{~V}$

A1
[2]

3 (a random error (in the measurements) of the length OR resistance
(b) gradient $=(3.6-1.9) /(0.8-0.4)$

$$
=4.25
$$

(c) $R=\rho l / A$

$$
\begin{aligned}
\rho & =\text { gradient } \times \text { area }=4.25 \times 0.12 \times 10^{-6} \\
& =5.1(0) \times 10^{-7} \Omega \mathrm{~m}
\end{aligned}
$$

(d) resistance decreasing with increasing area

$$
\begin{align*}
& A=\left[\pi \times\left(0.38 \times 10^{-3}\right)^{2}\right] / 4 \quad\left(=0.113 \times 10^{-6} \mathrm{~m}^{2}\right) \\
& R=\left(4.5 \times 10^{-7} \times 1.00\right) /\left(\left[\pi \times\left(0.38 \times 10^{-3}\right)^{2}\right] / 4\right)=4.0(3.97) \Omega \tag{3}
\end{align*}
$$

C
M1
(b) (i) $I=V / R$

$$
=2.0 / 5.0=0.4(0) \mathrm{A}
$$

C1
A

A
(ii) p.d. across $\mathrm{BD}=4 \times 0.4=1.6 \mathrm{~V}$
(iii) p.d. across $\mathrm{BC}(l)=1.5(\mathrm{~V})$

$$
B C(l)=(1.5 / 1.6) \times 100=94(93.75) \mathrm{cm}
$$

(c) p.d. across wire not balancing e.m.f. of cell $O R$ cell Y has current energy lost or lost volts due to internal resistance

B1
B1

5 (a) ohm = volt / ampere
(b) $\rho=R A / l$ or unit is $\Omega \mathrm{m}$

$$
\text { units: } \vee A^{-1} m^{2} m^{-1}=\operatorname{NmC}^{-1} A^{-1} m^{2} m^{-1}
$$

C1

$$
\begin{aligned}
& =\mathrm{kg} \mathrm{~m}^{2} s^{-2} A^{-1} s^{-1} A^{-1} m^{2} m^{-1} \\
& =\operatorname{kg~m}^{3} s^{-3} A^{-2}
\end{aligned}
$$

A1
(c) (i) $\rho=\left[3.4 \times 1.3 \times 10^{-7}\right] / 0.9$

C1

$$
\begin{equation*}
=4.9 \times 10^{-7}(\Omega \mathrm{~m}) \tag{2}
\end{equation*}
$$

(ii) $\max =2 .(0) \mathrm{V}$

A1
$\min =2 \times(3.4 / 1503.4)=4.5 \times 10^{-3} V$
A1
(iii) $P=V^{2} / R$ or $P=V I$ and $V=I R$

C1

$$
\begin{aligned}
& =(2)^{2} / 3.4 \\
& =1.18 \text { (allow 1.2) } \mathrm{W}
\end{aligned}
$$

A1
(d) (i) power in Q is zero when $R=0$

B1
(ii) power in $\mathrm{Q}=0$ / tends to zero as $R=$ infinity
(ii) $R=V / I$ hence take co-ords of V and I from graph and calculate V / I

B1
(b) each lamp in parallel has a greater p.d. / greater current

M1 lamp hotter

M1 resistance of lamps in parallel greater A1
(ii) $P=V^{2} / R$ or $P=V I$ and $V=I R$

C1
$R=144 / 50=2.88$ for each lamp C1 total $R=1.44 \Omega$ A1

A1
$\begin{array}{ll}\text { (ii) sketch vertical axis labelled appropriately } & \mathrm{B} 1 \\ \text { (straight) line from origin then curved in correct direction } & \mathrm{B} 1\end{array}$ line passes through $12 \mathrm{~V}, 3.0 \mathrm{~A} \quad \mathrm{~B} 1$
(b) (i) 2.0 kW

A1
(ii) 0.5 kW A1 [1
(iii) total resistance $=3 R / 2$ C1 power $=0.67 \mathrm{~kW}$ A1

