Resistance & Resistivity

Mark Scheme 1

Level	International A Level				
Subject	Physics				
Exam Board	CIE				
Topic	Current of Electricity				
Sub Topic	Resistance & Resistivity				
Paper Type	Theory				
Booklet	Mark Scheme 1				

Time Allowed: 82 minutes

Score: /68

Percentage: /100

A*	Α –	В	С	D	E	U
>85%	'77.5%	70%	62.5%	57.5%	45%	<45%

- (a curved line showing decreasing gradient with temperature rise M1 smooth line not touching temperature axis, not horizontal or vertical anywhere A1 [2]
 (b) (i) (no energy lost in battery because) no/negligible internal resistance B1 [1]
 - (b) (i) (no energy lost in battery because) no/negligible internal resistance (ii) I = V/R= $8/15 \times 10^3$ or $1.6/3.0 \times 10^3$ or $2.4/4.5 \times 10^3$ or $12/22.5 \times 10^3$ C1 $= 0.53 \times 10^{-3} A$ [2] Α (iii) p.d. across $X = 12 - 8.0 - 3.0 \times 10^{3} \times 0.53 \times 10^{-3} (= 2.4 \text{ V})$ $R_{\rm X} = 2.4/(0.53 \times 10^{-3})$ С $R_{\text{tot}} = 12/0.53 \times 10^{-3} \ (= 22.5 \times 10^{3} \ \Omega)$ $R_{\text{X}} = (22.5 - 15.0 - 3.0) \times 10^{3}$ (C1) (C1) $4.5(2) \times 10^{3} \Omega$ **A1** [3]
 - (iv) resistance decreases hence current (in circuit) is greater M1

 p.d. across X and Y is greater hence p.d across Z decreas A1

 or explanation in terms of potential divider: R_Z decreases so $R_Z/(R_X + R_Y + R_Z)$ is less (M1)
 therefore p.d. across Z decreases (A1)

2 **(a** $R = \rho l / A$

=
$$(5.1 \times 10^{-7} \times 0.50) / \pi (0.18 \times 10^{-3})^2 = 2.5 (2.51) \Omega$$
 M1 [2]

(b) (i) resistance of CD = $8 \times \text{resistance}$ of AB = $20 \, (\Omega)$

circuit resistance =
$$[1/5.0 + 1/20]^{-1} = 4.0 (\Omega)$$

current =
$$V/R$$
 = 6.0/4.0

(ii) power in AB = I^2R or power = V^2/R C1 = $(1.2)^2 \times 2.5 = 3.6 \text{W}$ = $(3.0)^2/2.5 = 3.6 \text{W}$ A1 [2]

(iii) potential drop A to M =
$$1.25 \times 1.2 = 1.5 \text{ V}$$
 M1 potential drop C to N = 3.0 V

3 (a <u>random</u> error (in the measurements) of the length OR resistance B1 [1]

(b) gradient =
$$(3.6 - 1.9) / (0.8 - 0.4)$$
 C1
= 4.25 A1 [2]

(c)
$$R = \rho l / A$$

$$\rho = \text{gradient} \times \text{area} = 4.25 \times 0.12 \times 10^{-6}$$

$$= 5.1(0) \times 10^{-7} \Omega \text{ m}$$
C1
$$A [3]$$

(d) resistance decreasing with increasing area correct shape with curve being asymptote to both axes B1 [2]

4 (a $R = \rho l/A$

$$A = [\pi \times (0.38 \times 10^{-3})^2] / 4 = (0.113 \times 10^{-6} \text{ m}^2)$$

$$R = (4.5 \times 10^{-7} \times 1.00) / ([\pi \times (0.38 \times 10^{-3})^{2}] / 4) = 4.0 (3.97) \Omega$$
 M1 [3]

(b) (i)
$$I = V/R$$
 C1
= 2.0 / 5.0 = 0.4(0) A [2]

(ii) p.d. across BD =
$$4 \times 0.4 = 1.6 \text{ V}$$
 A [1]

(iii) p.d. across BC (
$$l$$
) = 1.5 (V)
BC (l) = (1.5 / 1.6) × 100 = 94 (93.75) cm [2]

(c) (i)
$$\rho = [3.4 \times 1.3 \times 10^{-7}] / 0.9$$
 C1 $= 4.9 \times 10^{-7} (\Omega \text{ m})$

(ii)
$$\max = 2.(0) \text{ V}$$
 A1
 $\min = 2 \times (3.4 / 1503.4) = 4.5 \times 10^{-3} \text{ V}$ A1 [2]

(iii)
$$P = V^2 / R$$
 or $P = VI$ and $V = IR$
= $(2)^2 / 3.4$
= 1.18 (allow 1.2) W A1 [2]

(d) (i) power in Q is zero when
$$R = 0$$
 B1 [1]

(ii) power in
$$Q = 0$$
 / tends to zero as $R = infinity$ B1 [1]

(a (i) Start from (0,0) and smooth curve in correct direction B1 Curve correct for end section never horizontal В1 [2] (ii) R = V/I hence take co-ords of V and I from graph and calculate V/IB1 [1] (b) each lamp in parallel has a greater p.d. / greater current M1 lamp hotter M1 resistance of lamps in parallel greater Α1 [3] (ii) $P = V^2 / R$ or P = VI and V = IRC1 R = 144 / 50 = 2.88 for each lamp C1 total $R = 1.44 \Omega$ Α1 [3] (i) either $P = V^2 / R$ C1 P = VI and V = IR $R = 4.0 \Omega$ Α1 [2] (ii) sketch vertical axis labelled appropriately В1 (straight) line from origin then curved in correct direction В1 line passes through 12 V, 3.0 A В1 [3] **(b) (i)** 2.0 kW **A1** [1 (ii) 0.5 kW Α1 [1 (iii) total resistance = 3R / 2 C1

— TUITION —

power = 0.67 kW

Α1

[2]