Resistance \& Resistivity Mark Scheme 2

Level	International A Level
Subject	Physics
Exam Board	CIE
Topic	Current of Electricity
Sub Topic	Resistance \& Resistivity
Paper Type	Theory
Booklet	Mark Scheme 2

(a (i) $\begin{array}{ll} \text { either } P=V^{2} / R & \text { o } \quad \begin{array}{l} I=1200 / 230 \text { or } 5.22 \\ \\ R=230^{2} / 1200 \end{array} \\ \begin{array}{ll} R=(230 \times 230) / 1200 \end{array} \\ =44.1 \Omega & \text { or } \quad R=230 / 5.22 \\ =44.1 \Omega \end{array}$	C1 M1 A0 [2]
$\text { (ii) } \begin{aligned} R & =\rho L / A \\ & =\left(1.7 \times 10^{-8} \times 9.2 \times 2\right) /\left(\pi \times\left\{0.45 \times 10^{-3}\right\}^{2}\right) \\ & =0.492 \Omega \end{aligned}$	$\begin{aligned} & \text { C1 } \\ & \text { M } \\ & \text { A0 } \end{aligned}$
(b) $\begin{align*} \text { current } & =230 / 44.6 \\ \text { power } & =(230 / 44.6)^{2} \times 44.1 \\ & =1170 \mathrm{~W} \tag{3} \end{align*}$ (allow full credit for solution based on potential divider)	$\begin{aligned} & \mathrm{C} 1 \\ & \mathrm{C} 1 \\ & \mathrm{~A} \end{aligned}$
(c) e.g. less power dissipated in the heater / smaller p.d. across heater / more power loss in cable / current lower cable becomes heated / melts (any two sensible suggestions, 1 each, max 2)	$\begin{aligned} & \mathrm{B} 1 \\ & \mathrm{~B} 1 \quad[2] \end{aligned}$

2 (a total resistance in series $=2 R$
total resistance in parallel $=1 / 2 R$ M1
ratio is $2 R / 1 / 2 R=4$......(allow mark if clear numbers in the ratio) $A 0$
(b) at 1.5 V , current is 0.10 A
resistance $=\mathrm{V} / \mathrm{I}=\frac{1.5}{0.1}$ $=15 \Omega$ A1
(use of tangent or any other current scores no marks)
(c)

	p.d. acro each lamp $/ \mathrm{V}$	resistance of each lamp $/ \Omega$	combined resistance $/ \Omega$
series	1.5	15	30
parallel	3.0	20	10

column 1 ... A1
columns 2 and 3: max 3 marks with -1 mark for each error or omission A3
(d) (ratio is 3(allow e.c.f.) A1
(ii) resistance increases as potential difference increases B1
increasing p.d. increases current B1
current increases non-linearly so resistance increases B1
current $=10.5 \times 103 / 230 \quad$ M1

$$
=45.7 \mathrm{~A}
$$

(b) p.d. across cable $=5.0 \mathrm{~V}$

$$
R=5.0 / 46
$$

$$
=0.11 \Omega
$$

(ii) $R=\rho L / A$ C1
$0.11=\left(1.8 \times 10^{-8} \times 16 \times 2\right) / A \quad C 1$
$A=5.3 \times 10^{-6} \mathrm{~m}^{2}$ A1 (wires in parallel, not series, allow max $1 / 3$ marks)
(c) either power $=V^{2} / R$ or power $\propto V^{2}$
ratio $=(210 / 230)^{2}=0.83$
(ii) resistance of cable is greater C1
greater power loss/fire hazard/insulation may melt wire may melt/cable gets hot
M1A1wire may melt/cable gets hot

4 (a) (i) $R=\rho L / A$
(ii) strain $=\Delta L / L$
either $\Delta R=\rho \Delta L / A \quad$ or $R \propto L$ with ρ and A constant B1
dividing, $\Delta R / R=\Delta L / L \quad A 0$
[3]
(b) \quad Young modulus $=$ stress $/$ strain

C1
strain $=72.0 /\left(1.20 \times 10^{-7} \times 2.10 \times 10^{11}\right)$
C1
$=2.86 \times 10^{-3}$ (allow 1/350
A1
$\Delta R=2.86 \times 10^{-3} \times 4.17=1.19 \times 10^{-2} \Omega$
A1
answer given to 3 sig. fig

B1

5 (a) (i) resistance is ratio V / I (at a point)
either gradient increases or I increases more rapidly than V
(If states $R=$ reciprocal of gradient, then 0/2 marks here)
(ii) current $=2.00 \mathrm{~mA}$
resistance $=2000 \Omega$
(b) (i) straight line from origin
passing through ($6.0 \mathrm{~V}, 4.0 \mathrm{~mA}$) (allow $1 / 2$ square tolerance)
(ii) individual currents are 0.75 mA and $1 / 33 \mathrm{~mA}$
current in battery $=2.1 \mathrm{~mA}$
(allow argument in terms of $P=I^{2} R$ or IV)
(c) same current in R and in C
p.d. across C is larger than that across R M1
so since power $=V I$, greater in C
A1 [3]

6 (a) (i) $P=V I$

$$
\text { current }=60 / 240=0.25 \mathrm{~A}
$$

C1 A1
(ii) $\quad R(=V / I)=240 / 0.25$

$$
=960 \Omega
$$

(b) $\quad R=\rho L / A$ (wrong formula, $0 / 3$) C1
$960=\left(7.9 \times 10^{-7} \times L\right) /\left(\pi \times\left\{6.0 \times 10^{-6}\right\}^{2}\right)$ $L=0.137 \mathrm{~m}$ C1 (use of $A=2 \pi r$, then allow $1 / 3$ marks only for resistivity formula)
(c) e.g. the filament must be coiled/it is long for a lamp (allow any sensible comment based on candidate's answer for L)
7 (a) (i) resistance $=V / I$ C1
$=6.0 /\left(40 \times 10^{-3}\right)$

$$
=150 \Omega
$$ A1(no marks for use of gradient)

(ii) at 8.0 V , resistance $=8.0 /\left(50 \times 10^{-3}\right)=160 \Omega$ C1
change $=10 \Omega$ A1
(b) (i) straight line through origin M1
passes through $I=40 \mathrm{~mA}, \mathrm{~V}=8.0 \mathrm{~V}$ A1
(ii) current in both must be 40 mA C1
e.m.f. $=8.0+6.0=14.0 \mathrm{~V}$ A1

