Resistance & Resistivity

Mark Scheme 2

Level	International A Level
Subject	Physics
Exam Board	CIE
Topic	Current of Electricity
Sub Topic	Resistance & Resistivity
Paper Type	Theory
Booklet	Mark Scheme 2

Time Allowed: 80 minutes

Score: /66

Percentage: /100

CHEMISTRY ONLINE

A*	А	В	С	D	Е	U
>85%	'77.5%	70%	62.5%	57.5%	45%	<45%

(a (i) either $P = V^2 / R$ o I = 1200 / 230 or 5.22 C1 $R = (230 \times 230) / 1200$ $R = 230^2 / 1200$ or R = 230 / 5.22M1 $= 44.1 \Omega$ $= 44.1 \Omega$ Α0 [2] (ii) $R = \rho L/A$ C1 $= (1.7 \times 10^{-8} \times 9.2 \times 2) / (\pi \times \{0.45 \times 10^{-3}\}^{2})$ Μ $= 0.492 \Omega$ Α0 [2] **(b)** current = 230/44.6C1 power = $(230/44.6)^2 \times 44.1$ C1 = 1170 W Α [3] (allow full credit for solution based on potential divider) (c) e.g. less power dissipated in the heater / smaller p.d. across heater / more power loss in cable / current lower В1 cable becomes heated / melts B1 [2]

(any two sensible suggestions, 1 each, max 2)

2	(a		ance in pa	rallel =	½R		M1 e ratio)A0	[1]
	(b)	at 1.5 V, co					C1	
	(0)	(use of tan			current scores no		A1	[2]
	(c)							
			p.d. ac each lan		resistance of each lamp / Ω	combined resistance / s	Ω	
		series	1.5	5	15	30		

20

column 1		A1	
columns 2 and 3: max 3 marks with -1 mar	rk for each error or omission	nA3	[4]

10

			(11 ()		
(d)	(ratio is 3	(allow e.c.t.)	 A1	[1]

(ii)	resistance increases as potential difference increases	B1	
	increasing p.d. increases current	B1	
	current increases non-linearly so resistance increases	B1	[3]

[Total: 11]

parallel

3.0

3	(a	power = VI current = $10.5 \times 103 / 230$ = 45.7 A		C1 M1 A0	[2]
	(b)		p.d. across cable = 5.0 V R = 5.0 / 46 = 0.11Ω	C1 C1 A1	[3]
		(ii)	$R = \rho L / A$ $0.11 = (1.8 \times 10^{-8} \times 16 \times 2) / A$ $A = 5.3 \times 10^{-6} \text{ m}^2$ (wires in parallel, not series, allow max 1/3 marks)	C1 C1 A1	[3]
	(c)		either power = V^2/R or power $\propto V^2$ ratio = $(210/230)^2 = 0.83$	C1 A1	[2]
		(ii)	resistance of cable is greater greater power loss/fire hazard/insulation may melt wire may melt/cable gets hot	M1 A1	[2]

4 (a) (i)
$$R = \rho L/A$$
 B1
(ii) strain = $\Delta L/L$ B1
 $either \Delta R = \rho \Delta L/A$ or $R \propto L$ with ρ and A constant dividing, $\Delta R/R = \Delta L/L$ C1
(b) Young modulus = stress / strain strain = 72.0 / (1.20 × 10⁻⁷ × 2.10 × 10¹¹) C1
 $= 2.86 \times 10^{-3}$ (allow 1/350 A1
 $\Delta R = 2.86 \times 10^{-3} \times 4.17 = 1.19 \times 10^{-2} \Omega$ A1
answer given to 3 sig. fig

5	(a)	(i)	resistance is ratio V/I (at a point)	E	31	
			either gradient increases or I increases more rapidly than V	E	31	[2]
			(If states R = reciprocal of gradient, then 0/2 marks here)			
		(ii)	current = 2.00 mA	C	C1	
			resistance = 2 000 Ω	A	4 1	[2]
	(b)	(i)	straight line from origin	N	/ 11	
			passing through (6.0 V, 4.0 mA) (allow ½ square tolerance)	A	4 1	[2]
		(ii)	individual currents are 0.75 mA and 1/33 mA	C	C1	
			current in battery = 2.1 mA	A	A 1	[2]
			(allow argument in terms of $P = I^2R$ or IV)			
	(c)	sar	me current in R and in C	N	/ 11	
		p.d	. across C is larger than that across R	N	/ 11	
		so	since power = VI, greater in C	A	4 1	[3]
6	(a)	(i)	current = 60/240 = 0.25 A	Α	C1 A1	
		(ii)	R (= V/I) = 240/0.25 = 960 Ω		11 \0	[3]
	(b)		$R = \rho L/A$ (wrong formula, 0/3)		21	
			960 = $(7.9 \times 10^{-7} \times L)/(\pi \times \{6.0 \times 10^{-6}\}^2)$ L = 0.137 m)1 \1	[3]
			(use of A = $2\pi r$, then allow 1/3 marks only for resistivity formula)			
	(c)		e.g. the filament must be coiled/it is long for a lamp (allow any sensible comment based on candidate's answer for L)		31	[1]
				Total		[7]

7	(a)	(i)	resistance = V/I	
			= 150 Ω	
		(ii)	at 8.0 V, resistance = 8.0/(50 x 10^{-3}) = 160 Ω	[4]
	(b)	(i)	straight line through origin	
		(ii)	current in both must be 40 mA	[4]