Resistance \& Resistivity Mark Scheme 3

Level	International A Level
Subject	Physics
Exam Board	CIE
Topic	Current of Electricity
Sub Topic	Resistance \& Resistivity
Paper Type	Theory
Booklet	Mark Scheme 3

Time Allowed:	51 minutes				
Score:	/42				
Percentage:	/100				
A* A	B	C	D	E	U
>85\% '77.5\%	70\%	62.5\%	57.5\%	45\%	<45\%

1 (a (i) in series $2 X$ or in parallel $X / 2 \quad$ M1 other relationship given and $4 \times$ greater in series (than in parallel) A1
(ii) due to the internal resistance $\quad \mathrm{B} 1$
total resistance for series circuit is not four times greater than resistance for parallel circuit

B1
(iii) 1. $E=I_{1}(2 X+r)$ or $12=1.2(2 X+r)$ A1
2. $E=I_{2}(X / 2+r)$ or $12=3.0(X / 2+r)$
(iv) $2 X+r=10$ and $X / 2+r=4$ $X=4.0 \Omega$ A1

\rightarrow
(b) $P=I^{2} R$ or V^{2} / R or $V I$

$$
\begin{aligned}
\text { ratio } & =\left[(1.2)^{2} \times 4\right] /\left[(1.5)^{2} \times 4\right] \\
& =0.64
\end{aligned}
$$

(c) the resistance (of a lamp) changes with V or I
V or I is greater in parallel circuit or circuit 2 or V or I is less in series circuit or circuit 1
(ii) electrical to thermal / heat or heat and light
(b) (i) $\left(P_{\mathrm{B}}=\right) E I$ or $I^{2}\left(R_{1}+R_{2}\right)$
(ii) $\quad\left(P_{\mathrm{R}}=\right) I^{2} R_{1}$
(c) $R=\rho l / A$ or clear from the following equation
ratio $=I^{2} R_{1} / I^{2} R_{2}=\frac{\rho l / \pi d^{2}}{\rho(2 l) / \pi(2 d)^{2}}$ or R_{1} has $8 \times$ resistance of R_{2}

$$
=8 \text { or } 8: 1
$$

(d) $P=V^{2} / R$ or E^{2} / R
(V or E the same) hence ratio is $1 / 8$ or $1: 8=0.125$ (allow ecf from (c))
(b) (i) metal wire in series with power supply and ammeter
voltmeter in parallel with metal wire
rheostat in series with power supply or potential divider arrangement or variable power supply
(ii) 1. intercept on graph B1
2. scatter of readings about the best fit line
(iii) correction for zero error explained
use of V and corrected I values from graph
resistance $=V / I=22 .(2) \Omega$ [e.g. $4.0 / 0.18]$
(c) $R=6.8 / 0.64=10.625$

$$
\begin{array}{rlrl}
R= & 6.8 / 0.64=10.625 & \mathrm{C} 1 \\
\% R & =\% V+\% I & \\
& =(0.1 / 6.8) \times 100+(0.01 / 0.64) \times 100 & \mathrm{C} 1 \\
& =1.47 \%+1.56 \% & \\
\Delta R & =0.0303 \times 10.625=0.32 \Omega & \mathrm{~A} 1
\end{array}
$$ B1

B1 [3]

B1
B1 C1
A1

4 (a (i) metre rule / tape (not 'rule')
B [1]
(ii) micrometer (screw gauge) / digital caliper B1 [1]
(iii) ammeter and voltmeter / ohmmeter / multimeter on 'ohm' setting
(b) (i) resistivity $=R A / L$

$$
\begin{array}{lr}
=\left[7.5 \times \pi \times\left(0.38 \times 10^{-3}\right)^{2} / 4\right] / 1.75 & \text { M1 } \\
=4.86 \times 10^{-7} \Omega \mathrm{~m} & \text { A0 }
\end{array}
$$

C1
(ii) (uncertainty in $R=$) $[0.2 / 7.5] \times 100=2.7 \%$
and (uncertainty in $L=$) [3/1750] $\times 100=0.17 \%$
(uncertainty in $A=$) $2 \times(0.01 / 0.38) \times 100=5.3 \%$ total $=8.13 \%$
uncertainty $=0.395 \times 10^{-7}(\Omega \mathrm{~m})$
(missing 2 factor in uncertainty in A, then allow max $3 / 4$)
(c) resistivity $=\left(4.9 \times 10^{-7} \pm 0.4 \times 10^{-7}\right) \Omega \mathrm{m}$

C1 C1
[2] C1

A1
[4] A1

