Resistance & Resistivity Mark Scheme 3

Level	International A Level
Subject	Physics
Exam Board	CIE
Торіс	Current of Electricity
Sub Topic	Resistance & Resistivity
Paper Type	Theory
Booklet	Mark Scheme 3

Time Allowed:	51 minutes		
Score:	/42		
Percentage:	/100		

CHEMISTRY ONLINE

A*	Α	В	С	D	E	U
>85%	'77.5%	70%	62.5%	57.5%	45%	<45%

(a	(i)	 in series 2X or in parallel X/2 other relationship given and 4× greater in series (than in parallel) 			2]
	(ii)	due to the internal resistance	B1		
		total resistance for series circuit is not four times greater than resistance for parallel circuit	B1	[2	2]
	(iii)	1. $E = I_1(2X + r)$ or $12 = 1.2(2X + r)$	A1		
		2. $E = I_2(X/2 + r)$ or $12 = 3.0(X/2 + r)$	A1	[2	2]
	(iv)	2X + r = 10 and X/2 + r = 4 X = 4.0 Ω	A1	[
	(b)	$P = I^2 R$ or V^2 / R or VI		C1	
		ratio = $[(1.2)^2 \times 4] / [(1.5)^2 \times 4]$ = 0.64		A1	[2]
	(c)	the resistance (of a lamp) changes with <i>V</i> or <i>I</i>		B1	
		<i>V</i> or <i>I</i> is greater in parallel circuit or circuit 2 or <i>V</i> or <i>I</i> is less in series circuit or circuit 1		B1	[2]

<u>CHEMISTRYONLINE</u> — TUITION —

1

(a	(i)	chemical to electrical	B1	[1]
----	-----	------------------------	----	-----

(ii) electrical to thermal / heat or heat and light B1 [1]

(b) (i)
$$(P_{\rm B}=) EI \text{ or } I^2(R_1+R_2)$$
 A [1]

(ii)
$$(P_{\rm R}=) I^2 R_1$$
 A1 [1]

(c) $R = \rho l / A$ or clear from the following equation ratio = $I^2 R_1 / I^2 R_2 = \frac{\rho l / \pi d^2}{\rho (2l) / \pi (2d)^2}$ or R_1 has $8 \times$ resistance of R_2 = 8 or 8:1 A1 [3]

(d)
$$P = V^2 / R$$
 or E^2 / R
(V or E the same) hence ratio is 1/8 or 1:8 = 0.125 (allow ecf from (c)) C1
A1 [2]

3(a resistance = potential difference / currentB1[1](b) (i) metal wire in series with power supply and ammeter
voltmeter in parallel with metal wire
rheostat in series with power supply or potential divider arrangement
or variable power supplyB1[3](ii) 1. intercept on graphB1[1]2. scatter of readings about the best fit lineB1[1](iii) correction for zero error explained
use of V and corrected I values from graph
resistance = V/I = 22.(2)
$$\Omega$$
 [e.g. 4.0 / 0.18]B1[1](c) $R = 6.8 / 0.64 = 10.625$ C1 $\% R = \% V + \% I$
 $= (0.1 / 6.8) \times 100 + (0.01 / 0.64) \times 100$
 $= 1.47\% + 1.56\%$
 $\Lambda R = 0.0303 \times 10.625 = 0.32 \Omega$
 $R = 10.6 \pm 0.3 \Omega$ C1S1

2

4	(a (i)	metre rule / tape (not 'rule')	В	[1]
	(ii)	micrometer (screw gauge) / digital caliper	B1	[1]
	(iii)	ammeter and voltmeter / ohmmeter / multimeter on 'ohm' setting	B1	[1]
	(b) (i)	resistivity = RA / L = $[7.5 \times \pi \times (0.38 \times 10^{-3})^2 / 4] / 1.75$ = $4.86 \times 10^{-7} \Omega m$	C1 M1 A0	[2]
	(ii)	(uncertainty in $R =$) $[0.2 / 7.5] \times 100 = 2.7\%$ and (uncertainty in $L =$) $[3 / 1750] \times 100 = 0.17\%$ (uncertainty in $A =$) $2 \times (0.01 / 0.38) \times 100 = 5.3\%$ total = 8.13\%	C1 C1 C1	
		uncertainty = 0.395×10^{-7} (Ω m) (<i>missing 2 factor in uncertainty in A, then allow max 3/4</i>)	A1	[4]
	(c) res	sistivity = $(4.9 \times 10^{-7} \pm 0.4 \times 10^{-7}) \Omega \text{ m}$	A1	[1]

