Sensing Devices
 Mark Scheme 1

Level	International A Level
Subject	Physics
Exam Board	CIE
Topic	Current of Electricity
Sub Topic	Sensing Devices
Paper Type	Theory
Booklet	Mark Scheme 1

Time Allowed:	66 minutes				
Score:	/55				
Percentage:	/100				
A* A	B	C	D	E	U
>85\% '77.5\%	70\%	62.5\%	57.5\%	45\%	<45\%

1 (a)	$\begin{aligned} & V / E=R / R_{\text {tot }} \\ & 1.0 / 1.5=R /(R+3900) \\ & R=7800 \Omega . \end{aligned}$	or or or	$\begin{aligned} & 0.5=I \times 3900 \\ & 1.0=0.5 R / 3900 \\ & R=7800 \Omega \end{aligned}$	C1 1 A0
(b)	$\begin{aligned} V & =1.5 \times(7800 /\{7800+1250\}) \\ & =1.29 \mathrm{~V} . . \end{aligned}$	or or	$\begin{aligned} & I=1.5 /(7800+1250) \\ & V=I R=1.29 \mathrm{~V} \end{aligned}$	C1 A1
(c)	Combined resistance of R and voltmeter is 3900Ω reading at $0{ }^{\circ} \mathrm{C}$ is 0.75 V			C1 A1

Total
when strained, $V_{\mathrm{A}}=2000 \times 121.5 /(121.5+120.0)$
$=1006.2 \mathrm{mV}$
change $=6.2 \mathrm{mV}$ (allow 6 mV)
$\begin{array}{ll}\text { (b) (1. resistor between } \mathrm{V}_{\text {IN }} \text { and } \mathrm{V}^{-} \text {and } \mathrm{V}^{+} \text {connected to earth } & \text { B1 } \\ \text { resistor between } \mathrm{V}^{-} \text {and } \mathrm{V}_{\text {OUT }} & \text { B1 }\end{array}$
2. $P /+$ sign shown on earth side of voltmeter
(ii) ratio of $R_{\mathrm{F}} / R_{\mathrm{IN}}=40 \quad \mathrm{M} 1$
$R_{\text {IN }}$ between 100Ω and $10 \mathrm{k} \Omega$
(any values must link to the correct resistors on the diagram)

3 (a (i) light-dependent resistor/LDR
(ii) strain gauge
(iii) quartz/piezo-electric crystal
(b) (resistance of thermistor decreases as temperature increses
etiher $\quad V_{\text {OUT }}=V \times R /\left(R+R_{\mathrm{T}}\right)$
or current increases and $V_{\text {OUT }}=I R$
A1
$V_{\text {out }}$ increases
A1
(ii) either change in R_{T} with temperature is non-linear or $\quad V_{\text {OUT }}$ is not proportional to $R_{\mathrm{T}} /$ change in $V_{\text {OUT }}$ with R_{T} is non-linear \quad M1 so change is non-linear A1

4 (a 30 litres $\rightarrow 54$ litres (allow ± 4 litres on both limits)
(b) only 0.1 V change in reading for 10 litre consumption (or similar numbers) above about 60 litres gradient is small compared to the gradient at about 40 litres
(ii) voltmeter reading (nearly) zero when fuel is left C1 voltmeter reads only about 0.1 V when 10 litres of fuel left in tank A1 ("voltmeter reads zero when about 4 litres of fuel left in tank" scores 2 marks)
(a) any value greater than, or equal to, $5 \mathrm{k} \Omega$
(b) (i) 'positive' shown in correct position B1
(ii) $V^{+}=(500 / 2200) \times 4.5$
$\approx 1 \mathrm{~V}$
$V^{-}>V^{+}$so output is negative B
green LED on, (red LED off) (allow full ecf of incorrect value of V^{+})
(iii) either V^{+}increases or $V^{+}>V^{-}$ M1
green LED off, red LED on A1

6
(a) thin / fine metal wire \quad B1 lay-out shown as a grid
B1 encased in plastic B1
(b) (i) gain (of amplifier) B1
(ii) for $V_{\text {OUT }}=0$, then $V^{+}=V^{-}$or $V_{1}=V_{2} \quad$ C1
$V_{1}=(1000 / 1125) \times 4.5 \quad$ C1
$V_{1}=4.0 \mathrm{~V} \quad \mathrm{~A} 1$
(iii) $\quad V_{2}=(1000 / 1128) \times 4.5$

$$
\begin{aligned}
& =3.99 \mathrm{~V} \\
V_{\text {OUT }} & =12 \times(3.99-4.00)
\end{aligned}
$$

$$
=(-) 0.12 \mathrm{~V} \quad \mathrm{~A} 1
$$

7 (a) (i) strain gauge B1B1
(b) circuit: coil of relay connected between sensing circuit output and earth B1
switch across terminals of external circuit B1
diode in series with coil with correct polarity for diode B1
second diode with correct polarity B1
second diode with correct polarity
[4]
8 (a) resistance of wire $=\rho L / A$ B1
as crack widens, L increases M1
and A decreases M1
so resistance increases A0
(b) $\Delta L / L=\Delta R / R$ B1
$=(146.2-143.0) / 143.0 \times 100$ C1
$\Delta L / L=2.24 \%$ A1(ii) piezo-electric / quartz crystal / transducer
(ii) piezo-electric / quartz crystal / transducer

